
LA-UR-19-27164

Porting mini-apps to ARM HPC systems
Brian J Gravelle, University of Oregon - Mentors: Dave Nystrom, Howard Pritchard

HPC-ENV, Application Readiness Team
Presented at the HPC 2019 Student Mini-Showcase, Aug. 1, 2019 

ARM in HPC
• HPC has long been dominated by x86 and IBM
• ARM offers an efficient alternative

Methodology
• SNAP - OpenMP, MPI, Structured mesh
• Branson - MPI, Monte Carlo
• Performance sampling with TAU

Skylake Gold 6152 ThunderX2-B1
Cores 44 56
Threads per core 2 4
Clock 2.1GHz 2.0GHz
L1 data cache 32K 32K
L2 cache 1024K 256K
L3 cache 30976K 32768K
SIMD instructions Up to 512 bit 128 bit NEON

Instruction mix
• ARM spends far more time branching
• Perhaps aggravated by lack of gather/ 

scatter SIMD operations
• ARM uses fewer SIMD instructions 

Frontend vs Backend
• ARM saturates the instruction pipelines
• Not the case when ARM uses 1 thread per 

MPI process
• Shows that optimizing the original code will 

be very different for each architecture

Energy Use
• ARM used significantly more energy
• Intel operates at a higher average power
• Finding ways to accelerate the ARM 

version could significantly improve energy 
consumption

In conclusion, the supposed advantages of 
ARM systems (energy efficiency and high 
thread counts) failed to materialize when 
compared to an Intel Skylake-Gold. However, 
no improvements have been made to fit the 
code to ARM, so minor adjustments may 
change this analysis. 

Additionally, the next generation of ARM-
based HPC systems is expected to have 
more advanced SIMD instructions (SVE) 
which should improve the energy efficiency 
and thread performance of the systems.

*This work used systems funded by the
Computational Systems and Software Environments (CSSE) 
subprogram of LANL’s ASC program NNSA/DOE


