HPC State Anomaly Detection and Visualization with SaNSA

Mentors: Dr. Nathan DeBardeleben (LANL), Prof. William M. Jones (CCU)

Motivation

Goal: Run various statistics on SaNSA data to gather information that will assist in finding anomalous nodes and correlated failures.

Background

- SaNSA (Supercomputer and Node State Architecture) is a tool designed to help users visualize HPC states.
- After ingesting system and scheduler events from a machine, the following metrics are calculated:
 - Time in state
 - Number of events per state
 - Percent of time spent in state
- Since events from 26 different states are being captured from all nodes on a given machine, datasets can become very large. Apache Spark and *Elasticsearch* are utilized to perform calculations on these large datasets with relatively low overhead.

Scheduler vs. Hardware Conflict

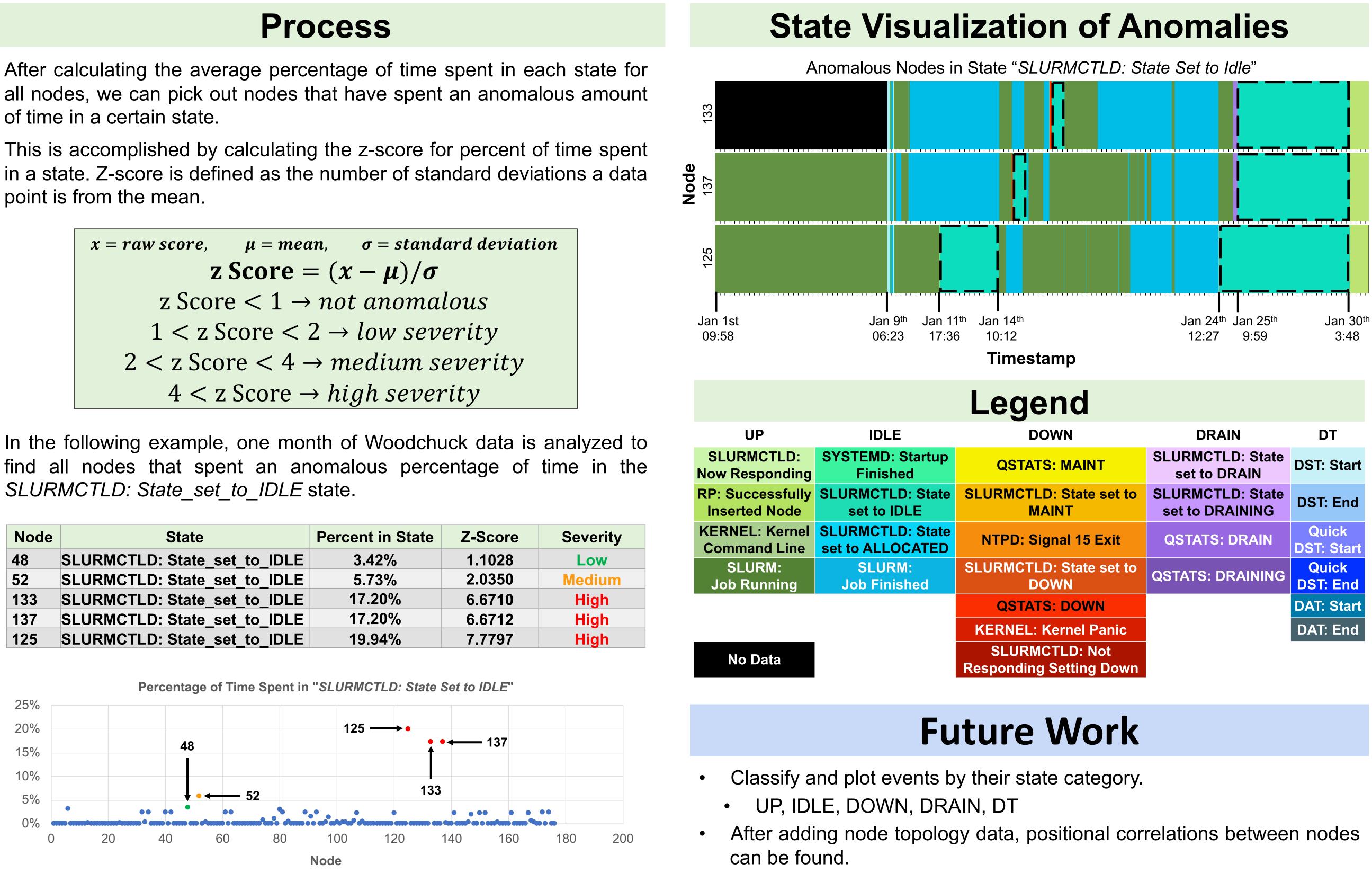
- Events from different sources occasionally contradict one another due to their hardware or scheduler perspective.
- In the example below:
 - The scheduler lost connection to the node 3 minutes before the node hardware was considered "down."
 - Likewise, the node hardware was declared "up" 9 minutes before the scheduler was able to reconnect.

State	Timestamp	
SLURMCTLD: Not_Responding_Setting_Down	2019-01-01T03:15:44.000-07	
QSTATS: DOWN	2019-01-01T03:18:55.000-07	
SYSTEMD: Startup_Finished	2019-01-01T03:19:50.000-07	
SLURMCTLD: Now_Responding	2019-01-01T03:28:55.000-07	

User-centric view: It does not matter that a node is up if it is unreachable & unable to be scheduled by the resource manager.

Node-reliability view: It seems incorrect to count the node as down if the hardware was up at the time and some other system, like a software timeout, kept it from being accessible.

Both views have been incorporated into SaNSA's data. This distinction is crucial when analyzing calculated results.


Megan Hickman Fulp - Coastal Carolina University

of time in a certain state.

 $x = raw \, score$, $\mu = mean$, z Score = $(x - \mu)/\sigma$ z Score $< 1 \rightarrow not$ anomalous 1 < z Score $< 2 \rightarrow low$ severity 2 < z Score $< 4 \rightarrow$ medium severity

Node	State	Percent in State	Z-Score
48	SLURMCTLD: State_set_to_IDLE	3.42%	1.1028
52	SLURMCTLD: State_set_to_IDLE	5.73%	2.0350
133	SLURMCTLD: State_set_to_IDLE	17.20%	6.6710
137	SLURMCTLD: State_set_to_IDLE	17.20%	6.6712
125	SLURMCTLD: State_set_to_IDLE	19.94%	7.7797

Once the anomalous nodes have been identified, their events can be visualized. The following visualization can assist in analyzing node-state over time, finding the cause of the anomaly, and determining correlated failures.

Anomaly Detection

These results come from one month of Woodchuck data (a few hundred nodes). In the future, SaNSA will be used on 6 months of Grizzly (~1,500 nodes) data and eventually Trinity data (20,000 nodes).

LA-UR-19-27051

