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Goals for the talk
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• Floating point sums are prone to rounding error 

• Consider how you are doing your sums
–And how much error there is likely to be

• We will provide heuristics to increase sum accuracy with low or no cost
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Motivation and Background

8/12/2020Los Alamos National Laboratory 3



A little background
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• IEEE 754 Standard for Floating-Point Arithmetic:
– Used on most common platforms
– Addition is commutative
– Floats (single precision) have around seven decimal digits of precision
– Doubles have around fifteen decimal digits of precision

• We target sums with a modest number of terms that are computed 
with few lines of code
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• In general, finite precision arithmetic is not associative.
• This can lead to rounding error in summation!

• This problem is well-known, but sometimes disregarded

Problem: Rounding error on a finite precision machine
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0.00000003000000
+1.000000
---------------------------

1.00000003 1.000000

Output: 

0.00000000
0.00000003

N. J. Higham. The accuracy of floating point summation. j-SISC, 14(4):783–799, July 1993. 

float a = 0.00000003;                                
float b = 1.0; 
float f = (a+b) -b;
printf("%.8lf\n", f);
float e = a+ (b-b);
printf("%.8lf\n", e);



Problem implications:
Error that persists into the final results! 
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• This rounding error can be significant and can propagate

• This can cause significant error in the final result
• So it must be addressed

• Talk goals
– Consider your summations, and how error-prone they might be
– Low-overhead heuristics that mitigate error
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Motivation: How should we add? 
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• You could assume it’s a non-issue

• You could add variables in the mathematically common order, e.g. 
sin 𝑥 = 𝑥 − !!

"! +
!"

$! −
!#

%! +
!$

&!

• You could guess
• You could sort the variables before summing
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Which method do you use?



Experiments
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Experiments: Mini-apps
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• Experimentation on two mini-apps (CLAMR and the Oregonator)

• We confirm that some orderings are much worse than others

• And developed some heuristics
– These are based upon groupings and orderings that give good results
– They have low runtime overhead

Vanessa Job, Terry Grové, Shane Fogerty, Chris Mauney, Brett Neuman, Laura Monroe, and Bob Robey. “Order 
matters: a case study on reducing floating point errors in sums through ordering and grouping”
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D. Nicholaeff, N. Davis, D. Trujillo, and R. W. Robey. Cell-based adaptive mesh refinement implemented 
with general purpose graphics processing units. 
Technical Report LA-UR-11-07127, Los Alamos National Laboratory, 2012. 
8/12

Experiment Setup: Case study CLAMR
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• CLAMR is a cell-base 
Adaptive Mesh Refinement 
(AMR) mini-app

• We looked at one equation 
to see how changing the 
ordering and grouping 
affects the error

• Runs 56 million times



Experiment: State equation
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𝑈'() = 𝑈*+, − ∆.∆/ (𝐹
0− 𝐹1 + 𝐺0 − 𝐺1) + 𝑤!0 −𝑤!1 +𝑤20 −𝑤21
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15.3231566686 0.0012867931 

10.9127381319

0.00201213275

0.03083222536

Correction terms

Fluxes
State



Experiment Setup: Screening method
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• 𝑈3*+, is original ordering/grouping of state equation in double precision:

• 𝑈.(4. is test ordering/grouping of state equation in single precision, e.g.

• For each time step, compute the relative difference (the error in double 
vs. single): | 5%&'( 15)*+)

5%&'(
| ≥ 1 ∗ 101%

• The relative error rate for the state equation in double vs. single is 
2.109%
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𝑈!"#$ = 𝑈"#$ − ∆&
∆'
(𝐹(− 𝐹) + 𝐺( − 𝐺)) + 𝑤*( −𝑤*) + 𝑤+( − 𝑤+)

𝑈&,-& = (− ∆&
∆'
((𝐹(+𝐺() + (−𝐹) −𝐺))) + (𝑤*( + ((−𝑤*) + 𝑤+( ) − 𝑤+)))) + 𝑈"#$



Experiment: Orderings and groupings
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• There are a lot of these: >= 2 million
–All of these look different to the compiler
–All of these may have a different computational result
– L. Monroe and V. Job. Computationally inequivalent summations and their parenthetic 

forms. http://arxiv.org/abs/2005.05387, 2020

• So we sampled, rather than test all
–Grouping by mean magnitude of the variable
–Grouping pairwise
–Random sample of 10000 of all orderings and groupings

• Then assessed error rate and symmetry
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Experiment: Other summation methods
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• Also tested traditional methods
–Kahan (a known accurate method)
–Sorting
–Several others
–More computationally expensive
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Experiment: Second case study, the Oregonator
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• Models a complex chemistry with oscillating components at equilibrium
• After developing heuristics on CLAMR, we tested on this application

– The heuristics were confirmed
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Results
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Results for CLAMR
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Method Relative Error Rate
Best ordering/grouping (group 

by mean magnitude) 0.082 % 

Best random sample of 10000 
ordering and grouping, all nine 0.083 % 

Kahan 0.083 % 
PSum 0.084 % 

Ascending 0.084 % 
Best of group by mean mag, 

with 𝑈 ,-. added first 1.015%

Original parenthesization 2.109 % 
Best of pairwise 2.109 % 

Worst of pairwise 3.517 % 
Worst of randomly selected 7.909%



Results: ~8% of randomly chosen orderings and 
groupings were good
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best 
grouped by 
mag, Kahan

original, best 
pairwise

worst pairwise

Tool under construction!



Results: Best of grouped by magnitude from random 
selection
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Error rate 0.082%

𝑈'./$ 0'"1 2 = 𝑈"#$ + 
[((−𝑓(+ 𝑓) ) + (−𝑔( + 𝑔))) + (((𝑤*( + 𝑤+() − 𝑤*)) −𝑤+) )]

𝑈!'"34 5+ 1.! = 𝑈"#$ +
[∆&
∆'
((−𝐹(+ 𝐹) ) + (−𝐺( + 𝐺))) + (((𝑤*( + 𝑤+() − 𝑤*)) −𝑤+) )]

Note: F’s grouped together and G’s grouped together in all three. 
They are numerators of derivatives

Error rate 0.083%



Analysis
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Analysis: Increased accuracy improved symmetry 
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Recommendations
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Recommendations: Heuristics
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• Always parenthesize sums completely
• Group variables of the same magnitude together
• Add groups smallest to largest
• Group pairs of terms that represent the numerator of a numerical 

derivative together
• Add pairwise within groups
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Recommendations: Blueprint for investigation
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• Target a sum from the code whose accuracy is critical

• Determine a benchmark for accuracy for the sum  
– Relative error to identify candidates could be a gating criterion

– Symmetry of the simulation in our study

• Can the application can trade more time for more accuracy?

– If so, use a method like Kahan or FastAccSum

• Is exhaustive testing infeasible?
– Form groups according to the heuristics

– Test a random sample

• Test the best candidates against the benchmark 
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Conclusions
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Takeaways
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• Naively ordered sums can be error prone
– Don’t leave ordering up to the compiler

• Informed ordering and grouping can provide additional accuracy 
without any performance cost
– Can rival gold standard methods such as Kahan
– Profiling or domain expertise can be used

• Certain important cases can be error prone, need attention 
– Parallelization of sums

– Reduced precision sums 
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Thank you
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ASC BML Inexact Computing Project
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Supplemental Slides
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Experiments: Ordering and Grouping
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Type of equation Distinct Computationally Inequivalent 
Examples

Ordered and 
grouped clumps, 
with permuted 
clumps

675

Distributed, added 
pairwise

11,340

Distributed, order 
and group all nine 
terms

2,027,025 

L. Monroe and V. Job. Computationally inequivalent summations and their parenthetic 
forms. http://arxiv.org/abs/2005.05387, 2020. 



Recommendations: Blueprint for investigation
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• Target a sum from the code whose accuracy is critical

• Determine a benchmark for accuracy for the sum  
– Symmetry of the simulation in our study

• Decide whether the application can trade more time for more 
accuracy
– If so, use a method like Kahan or FastAccSum

• Decide whether to use a screening tool to identify candidates 
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Recommendations: Blueprint for investigation
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• Form groups according to the heuristics if exhaustive testing is not 
practical

• Test a random sample if exhaustive testing is not practical

• Test the best candidates against the benchmark
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Recommendations: Testing our heuristics on 
Oregonator
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• The Oregonator models a complex chemistry of a system with 
oscillating components at equilibrium

• Contains two differential equations

,6
,. = 𝑘7AY  - 𝑘8𝑋𝑌 + 𝑘"AX  - 2𝑘9𝑋8

,:
,. = -𝑘8𝐴𝑌 − 𝑘8𝑋𝑌 + 𝑘$𝑓𝑍

There would be (15)(3) = 45 combos to check
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Recommendations: Testing our heuristics on 
Oregonator
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http://www.scholarpedia.org/article/Oregonator



Recommendations: Testing our heuristics on 
Oregonator
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Recommendations: Testing our heuristics on 
Oregonator
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,6
,. = (((𝑘7AY  - 2𝑘9𝑋8) + 𝑘"AX )- 𝑘8𝑋𝑌)

,6
,. = (-2𝑘9𝑋8 + (𝑘7AY  +(𝑘"AX - 𝑘8𝑋𝑌 )))

35

Fails due to large difference in magnitude between first two terms

Success – grouped terms of comparable magnitude together.
This supports our heuristic

10)6 Y - 107𝑋6



Experiment Setup: State equation
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𝑈'() = 𝑈*+, − ∆.∆/ (𝐹
0− 𝐹1 + 𝐺0 − 𝐺1) + 𝑤!0 −𝑤!1 +𝑤20 −𝑤21
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15.3231566686 0.0012867931 

10.9127381319

0.00201213275

0.03083222536

Correction terms

Fluxes
State



Experiment Setup: Screening method
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• Let 𝑈3*+, be the original ordering and grouping of the state equation in 
double precision:

• Let 𝑈.(4. be a test ordering and grouping of the state equation in single 
precision

Example:
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𝑈!"#$ = 𝑈"#$ − ∆&
∆'
(𝐹(− 𝐹) + 𝐺( − 𝐺)) + 𝑤*( −𝑤*) + 𝑤+( − 𝑤+)

𝑈&,-& = (− ∆&
∆'
((𝐹(+𝐺() + (−𝐹) −𝐺))) + (𝑤*( + ((−𝑤*) + 𝑤+( ) − 𝑤+)))) + 𝑈"#$



Experiment Setup: Relative difference
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0.443948170945829 – 0.4439482
0.443948170945829 = 0.0000000654449616

0.0000001

𝑈!"#$ 𝑈%&'% relative	
difference

If relative difference >= error threshold, the error is not tolerable

0.0000000654449616

Small errorLarge error

For each time step, compute the relative difference:
relative difference = | 8!"#$ ) 8%&'%

8!"#$
|  (error in double vs. single) 



Experiment Setup: Relative difference
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• State equation runs 56 million times

• Compute relative difference every time the state equation runs

• Compute the error rate for the entire CLAMR run 

𝐸 =
# times relative difference exceeds the threshold

# times state equation executes

39

The error rate for the original version of the state equation, 
when moving from double precision to single precision is 2.1%

• Smaller relative errors may not guarantee a “better” simulation output
• We don’t know until we test using goodness metric



Experiment Setup: Relative difference
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0.443948170945829 – 0.4439482
0.443948170945829 = 0.0000000654449616

0.0000001

𝑈!"#$ 𝑈%&'% relative	
difference

If relative difference >= error threshold, the error is not tolerable

0.0000000654449616

Small errorLarge error

For each time step, compute the relative difference:
relative difference = | 8!"#$ ) 8%&'%

8!"#$
|  (error in double vs. single) 



𝑈&,-& =[ +   ]++

Experiments: Ordering and grouping by magnitude 
(clumps)
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𝑈'() = 𝑈*+, − ∆.∆/ (𝐹
0− 𝐹1 + 𝐺0 − 𝐺1) + (𝑤!0 −𝑤!1 +𝑤20 −𝑤21)
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𝑈"#$



( +
+

Experiments: Ordering and grouping by magnitude 
(clumps)
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𝑈'() = 𝑈*+, − ∆.∆/ (𝐹
0− 𝐹1 + 𝐺0 − 𝐺1) + (𝑤!0 −𝑤!1 +𝑤20 −𝑤21)
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𝑈&,-& =[ +   ]+( ))+ + +( ) )+𝑈"#$
(

675 of these



Experiments: Pairwise grouping and ordering and 
grouping all nine terms
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𝑈'() = 𝑈*+, − ∆.∆/ (𝐹
0− 𝐹1 + 𝐺0 − 𝐺1) + 𝑤!0 −𝑤!1 +𝑤20 −𝑤21
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+ + ++𝑈"#$ ++ + +𝑈&,-&=



Experiments: Pairwise grouping and ordering and 
grouping all nine terms
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𝑈'() = 𝑈*+, − ∆.∆/ (𝐹
0− 𝐹1 + 𝐺0 − 𝐺1) + 𝑤!0 −𝑤!1 +𝑤20 −𝑤21
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+ + ++𝑈"#$ ++ + +𝑈&,-&=



Experiments: Pairwise grouping and ordering and 
grouping all nine terms
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𝑈'() = 𝑈*+, − ∆.∆/ (𝐹
0− 𝐹1 + 𝐺0 − 𝐺1) + 𝑤!0 −𝑤!1 +𝑤20 −𝑤21
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+ + ++𝑈"#$ ++ + +𝑈&,-&,.## /:/,= (( )) ))) ))(( ( ((

+ + ++𝑈"#$ ++ + +𝑈&,-&,4.:';:-,= ( )) ))( ) ( () ) (((

L. Monroe and V. Job. Computationally inequivalent summations and their parenthetic 
forms. http://arxiv.org/abs/2005.05387, 2020. 

2,027,025 of these.
We’ll sample 10,000

11,340 of these



Experiments: Traditional methods
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• Kahan
• Sorting
• Several others

46

N. J. Higham. The accuracy of floating point summation. j-SISC, 14(4):783–799, July 1993. 



Motivation
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• With increased accuracy, simulations may be able to run with reduced 
precision

• With lower precision, finer grained resolution may be possible for the 
same storage footprint
– This may lead to overall increased accuracy
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Experiment Setup: Screening method
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• Let 𝑈3*+, be the original ordering and grouping of the state equation in 
double precision:

• Let 𝑈.(4. be a test ordering and grouping of the state equation in single 
precision

Example:
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𝑈!"#$ = 𝑈"#$ − ∆&
∆'
(𝐹(− 𝐹) + 𝐺( − 𝐺)) + 𝑤*( −𝑤*) + 𝑤+( − 𝑤+)

𝑈&,-& = (− ∆&
∆'
((𝐹(+𝐺() + (−𝐹) −𝐺))) + (𝑤*( + ((−𝑤*) + 𝑤+( ) − 𝑤+)))) + 𝑈"#$


