
bueno
Benchmarking, Performance Analysis, & Provenance

Presented by Jacob Dickens
Mentors: Samuel Gutierrez (HPC-ENV) and Howard Pritchard (HPC-ENV)

LA-UR-20-25968

1. Overview
a. Project and Goals
b. Services

2. Provenance Mechanisms
a. Containers
b. Docker
c. Charliecloud

3. Benchmarking Challenges
a. Code Variety
b. Storage

4. Going Forward
a. Automation/Reproducibility
b. Status

Overview - Project and Goals
bueno is a benchmarking system providing users with tools to automate
application performance analysis

● Reproducibility & automated testing

A framework that is extendable; replacing tedium of:

● Data storage/analysis
● Program compilation/execution
● Environmental discovery/setup

bueno documentation can be found at: https://lanl.github.io/bueno/html/intro.html

Overview - Services
bueno’s command line interface allows for two categories of service:

● Build - create container images with metadata annotations for later analysis
and configuration reconstruction

● Run - execute bueno scripts and coordinate container image activation via
Charliecloud or host pass-through (i.e., a non-container option)

bueno’s collection of Python modules aid benchmarking

● Provides data logging
● Records of experiment generation settings
● Exposes user-programmable pre- and post-experiment actions

Provenance Mechanisms - Containers
Containers are self-contained environments that include
software packages.

● Lightweight - doesn’t require reserved OS environment
○ More efficient use of server space
○ Negligible performance-impacting overhead

● Secure - strongest default form of application isolation
● Standard - current industry standard, broad portability

Lange, John, et al. "Palacios and kitten: New high performance operating systems for scalable
virtualized and native supercomputing." 2010 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS). IEEE, 2010.

Providence Mechanisms - Docker
Automate creation and management of services within containers, addressing
potential problems with application dependencies:

● Conflicts - Different (potentially conflicting) versions can be run in separate
docker containers

● Missing - All dependencies are packaged with the application
● Environment - Migrating to new distributions is straightforward so long as

Docker is supported

Merkel, Dirk. (2014). Docker: Lightweight Linux Containers.... Retrieved from
https://www.linuxjournal.com/content/docker-lightweight-linux-containers-consistent-developme
nt-and-deployment

Providence Mechanisms - Docker (continued)

Koutoupis, Peter (2018). Containers. Retrieved from
https://www.linuxjournal.com/content/everything-you-need-know-about-linux-containers-part-ii-
working-linux-containers-lxc

● Replaces additional or specialized hardware
● Reduces installation & configuration time
● Simplifies image management

○ Eases repeatability

Docker images are made of collections of layers

● Added when the modifying the image
● Reused for later builds or rolled back as

built-in version control

Providence Mechanisms - Charliecloud
bueno uses Charliecloud, a similar system to Docker

● User-Defined Software Stacks (sets of containers)
● Aids dependency management
● Portable and internally consistent

Charliecloud stands out from Docker by allowing all of this without needing root
privileges at build and runtime. An issue that makes Docker a security risk in
practice.

Kniep, Christian (2018). The State of HPC Containers. Retrieved from
https://www.stackhpc.com/the-state-of-hpc-containers.html

Benchmarking Challenges - Code Variety
Code and code frameworks can vary widely from project to project, but also
between individual versions of the same project.

E.g., code that uses different versions of key computational kernels

Collecting data for comparative studies (e.g., post-mortem analysis) is a must

Benchmarking Challenges - Storage
The test results/configuration retained for later use in studies require storage
space with each new recorded test and the initial registry of container images.

● Information - A potentially large amount of information is needed to
guarantee repeatability

● Memory - The less information you record in each automated test, the less
memory you will need to have set aside for that purpose

Going Forward - Automation/Reproducibility
Our highest priority with bueno:

● Facilitate the reliable automation of application testing
● Support distribution of test settings as well as the benchmark results

○ Improve reproducibility between researchers

Going Forward - Status
The core bueno framework is mostly complete along with public APIs, minor
(user-facing) changes are expected moving forward. There is currently support
for five applications of varying complexity:

● Micro-Benchmarks
● Proxy & Real Applications

bueno’s source code is available on Github at https://github.com/lanl/bueno

Questions?
If you are interested in bueno supporting your application please let us know

Jacob Dickens
jacobpd@newmexicoconsortium.org

