

Towards CFD Fault Detection and Scaling with Machine Learning

Adam Good

agood@lanl.gov

Lissa Moore

Howard Pritchard

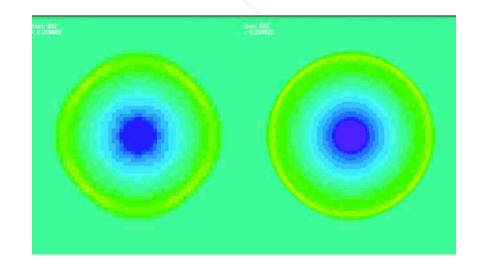
Garrett Kenyon

lissa@lanl.gov

howardp@lanl.gov

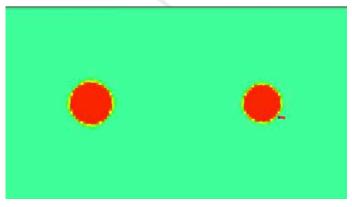
gkenyon@lanl.gov

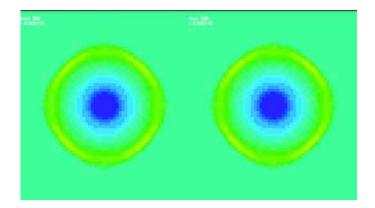
Problem Statement(s)


- Attacking two problems at once
 - Similar methodologies and tools
- CFD simulations generally require HPC clusters
 - Leaves them vulnerable to computational faults.
 - Detecting faults could help save time and improve results.
- CFD simulations take lots of resources to scale up.
 - Using ML for accurate approximations could be more efficient.

Modifying CLAMR

- Equal Timesteps for Different Resolutions
 - At a glance less than 0.0001s difference per output frame
- Separation of Mesh Resolution and Domain
 - Boundary Conditions may still need a little adjusting


Mesh resolution of 32 compared to a resolution of 64 over the same domain


Injecting Faults

- Using PINFI for fault injection
 - Tool based on Intel PIN
 - Lightweight
- Not built specifically for the type of faults we need
 - Sometimes crashes or causes fault in control flow or output
 - Needs modification for better control

A fault that visibly modified the output

A fault that doesn't visibly modify the output

Next Steps

- Refine Fault Injector
- Generate Datasets
- Do Some Machine Learning
 - Probably PetaVision
- Expand To More General Tools

Questions?

Or Ask Me:

- Adam Good
- agood@lanl.gov

In case you wanted to put a face to the voice

