

Memory Trace Analysis Using Machine Learning

Presented by:
Braeden Slade
post-bacc, HPC-DES, USRC
LA-UR-20-26022

Mentor: Nathan DeBardeleben

- Tools Used
- Basic Overview of the data
- Prediction Types
 - Classifications vs Regression
- Methods of Predicting
 - Data Splitting
 - Trees
 - RNN
- Results Using Trees
 - Read or Write(Classification)
 - Address(Regression)
- Results Using RNNS
 - Read or Write
- Clustering
- Conclusion/Future Work

- Tools Used
- Basic Overview of the data
- Prediction Types
 - Classifications vs Regression
- Methods of Predicting
 - Data Splitting
 - Trees
 - RNN
- Results Using Trees
 - Read or Write(Classification)
 - Address(Regression)
- Results Using RNNS
 - Read or Write
- Clustering
- Conclusion/Future Work

Tools used

Data Analysis

- Pandas
- Spark
- Seaborn
- Pyspark
- Numpy

- Sklearn
- Pyspark Machine Learning
- Tensorflow
- Keras

- Tools Used
- Basic Overview of the data
- Prediction Types
 - Classifications vs Regression
- Methods of Predicting
 - Data Splitting
 - Trees
 - RNN
- Results Using Trees
 - Read or Write(Classification)
 - Address(Regression)
- Results Using RNNS
 - Read or Write
- Clustering
- Conclusion/Future Work

Understanding the data

- Where does it come from?
 - ArmIE Executed
 - Run applications chosen
 - HPC benchmark traces
 - Binary trace file

Understanding the data

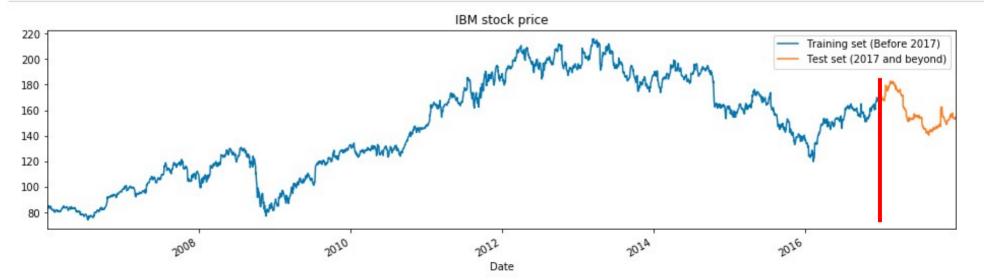
- Where does it come from?
 - ArmIE Executed
 - Run applications we choose
 - HPC benchmark traces
 - Binary trace file

	trace_id	trace_state	is_sve	is_write	size_in_bytes	addr_int
0	15	Start	False	False	0	0
1	15	Tracing	False	False	16	281474976676336
2	15	Tracing	False	False	8	281474976676912
3	15	Tracing	False	False	16	281474976676928
4	15	Tracing	False	False	8	281474976676984
1049381	15	Tracing	False	False	4	281474976676504
1049382	15	Tracing	False	True	8	281474976676328
1049383	15	Tracing	False	False	8	281474976676328
1049384	15	Tracing	False	False	4	4408096
1049385	15	End	False	False	0	0

- Tools Used
- Basic Overview of the data
- Prediction Types
 - Classifications vs Regression
- Methods of Predicting
 - Data Splitting
 - Trees
 - RNN
- Results Using Trees
 - Read or Write(Classification)
 - Address(Regression)
- Results Using RNNS
 - Read or Write
- Clustering
- Conclusion/Future Work

Classification

- Probability falls into certain category
- Dog vs Cat
- · Read vs Write
- Accuracy: (0-1)


Is this a cat or a dog?

Cats vs Dogs

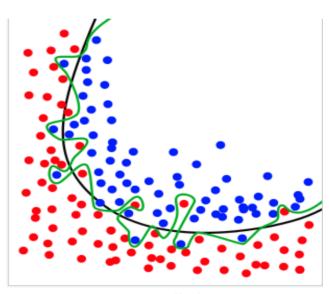
Regression

- Numerical values
- Value of Stock
- Accuracy: RMSE
- Address Accessed

- Tools Used
- Basic Overview of the data
- Prediction Types
 - Classifications vs Regression
- Methods of Predicting
 - Data Splitting
 - Trees
 - RNN
- Results Using Trees
 - Read or Write(Classification)
 - Address(Regression)
- Results Using RNNS
 - Read or Write
- Clustering
- Conclusion/Future Work

Data Splitting

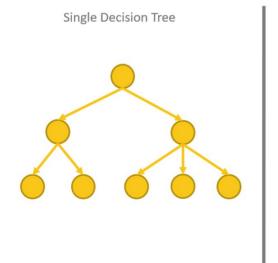
Single Trace used

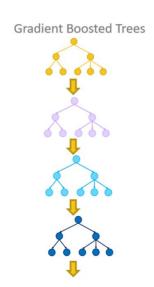

• 70/30 Random Split

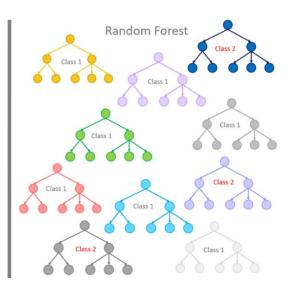
Data Splitting

Single Trace used

• 70/30 Random Split

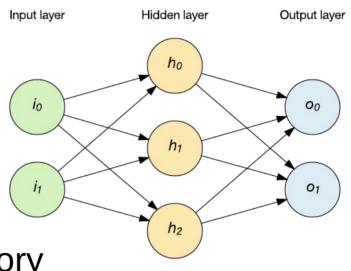

- Overfitting possible
- Overfits based on data, will not perform well on new data




Green = Overfitting
Black = Model we want

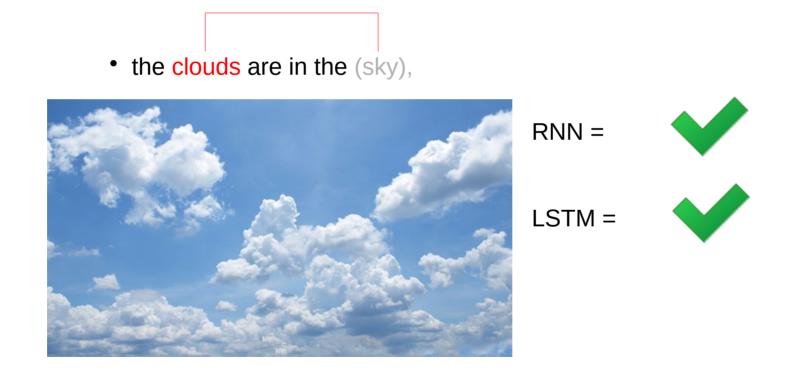
Methods of Testing (Trees)

- Trees
 - Decision Trees
 - Gradient Boosted Trees
 - Random Forests



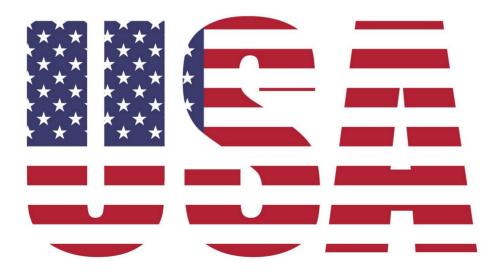
Methods of Testing (RNN)

- RNN(Recurrent Neural Networks)
 - Previous inputs predict future inputs
- LSTM Neural Networks (Future)
 - RNN with better "Logical Memory management"

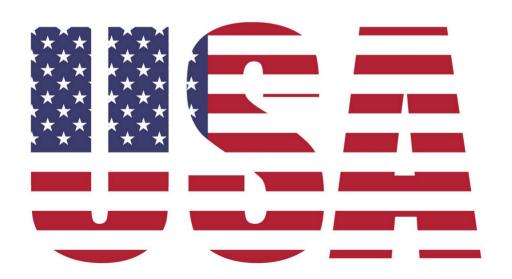


Example "Memory Management"

the clouds are in the...



Example "Memory Management"


Example 2 "Memory Management"

• I grew up in The United States. I am 22 years old. I play soccer. I speak fluent...

Example 2 "Memory Management"

• I grew up in The United States. I am 22 years old. I play soccer. I speak fluent (English)

RNN =

LSTM =

- Tools Used
- Basic Overview of the data
- Prediction Types
 - Classifications vs Regression
- Methods of Predicting
 - Data Splitting
 - Trees
 - RNN
- Results Using Trees
 - Read or Write(Classification)
 - Address(Regression)
- Results Using RNNS
 - Read or Write
- Clustering
- Conclusion/Future Work

Predict Read/Write (Classification)

DTC 0.5935198086247566 RFC 0.8219450537957972 GBT 0.8219450537957972

- Function calculates Accuracies
- Trees
 - Decision Tree Classifier: 59%
 - Random Forest Classifier: 82%
 - Gradient Boosted Tree: 82%

	is_sve	size_in_bytes	addr_int
0	0	0	0
1	0	16	281474976676336
2	0	8	281474976676912
3	0	16	281474976676928
4	0	8	281474976676984
1049381	0	4	281474976676504
1049382	0	8	281474976676328
1049383	0	8	281474976676328
1049384	0	4	4408096
1049385	0	0	0

Predict Read/Write (Classification)

```
DTC

0.5935198086247566

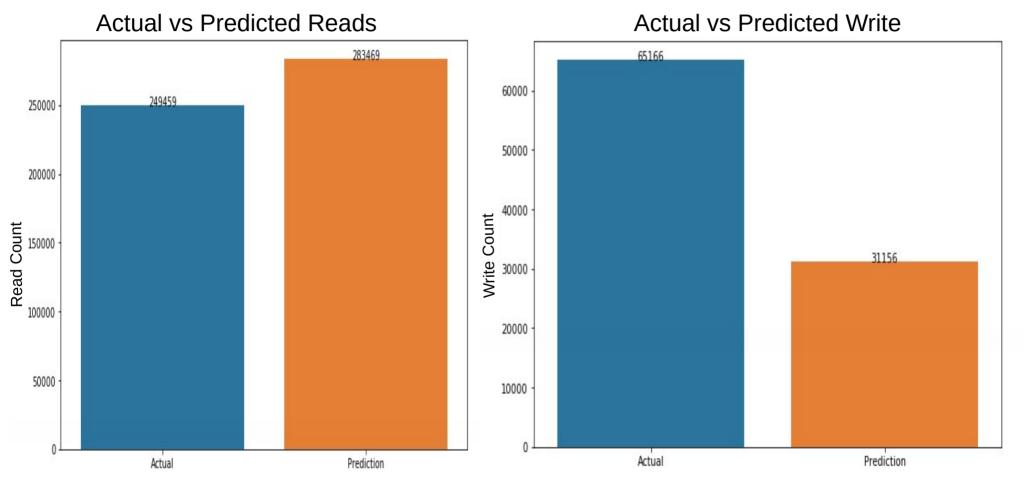
RFC

0.8219450537957972

GBT

0.8219450537957972

Feature Influence on label column


(3.[0.1.2].[0.34430663818548224.0.5695918210358937.0.08610154077862407

Most influencial column is: addr_int with a value of: 0.5695918210358
```

- Train on all the columns to predict read or write
- Which column had the most influence

	is_sve	size_in_bytes	addr_int
0	0	0	0
1	0	16	281474976676336
2	0	8	281474976676912
3	0	16	281474976676928
4	0	8	281474976676984
1049381	0	4	281474976676504
1049382	0	8	281474976676328
1049383	0	8	281474976676328
1049384	0	4	4408096
1049385	0	0	0

Predict Read/Write (Classification)

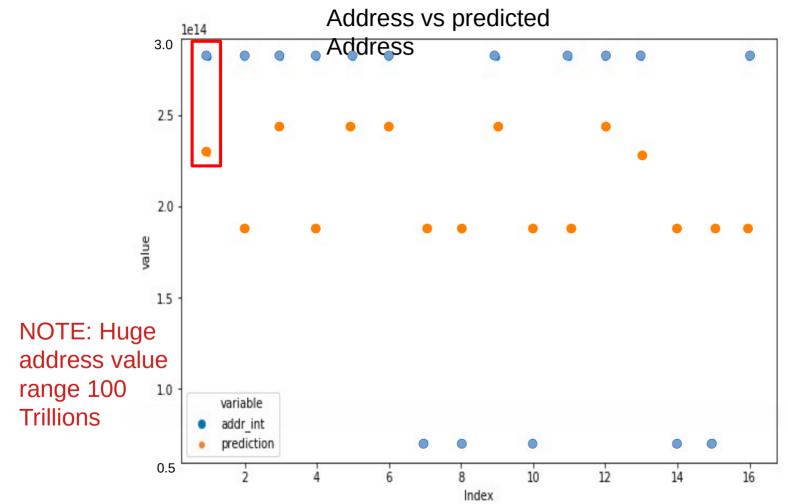
- Tools Used
- Basic Overview of the data
- Prediction Types
 - Classifications vs Regression
- Methods of Predicting
 - Data Splitting
 - Trees
 - RNN
- Results Using Trees
 - Read or Write(Classification)
 - Address(Regression)
- Results Using RNNS
 - Read or Write
- Clustering
- Conclusion/Future Work

Predict Address (Regression)

Linear Regression Checks

Root Mean Squared Error: 97486276721688.88

R-Squared: 0.09924256091497718

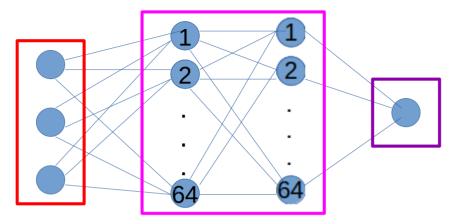

Regression Specific Information

Predict Address (Regression)

```
Linear Regression Checks
Root Mean Squared Error: 97486276721688.88
R-Squared: 0.09924256091497718
DTR
95902893908584.58
RFR
96739102296671.98
GBT
96739102296671.98
Feature Influence on label column
(3,[0,1,2],[0.27508678657457536,0.5763997614364617,0.14851345198896299])
Most influencial column is: is_write with a value of: 0.5763997614364617
```

- Same structure as Read and Write
 - Trees
 - Most influential feature

Predict Address (Regression)

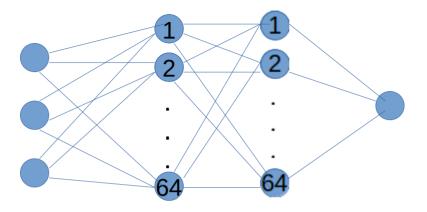


16 individual random addresses.

Blue = Actual Orange = predicted

- Tools Used
- Basic Overview of the data
- Prediction Types
 - Classifications vs Regression
- Methods of Predicting
 - Data Splitting
 - Trees
 - RNN
- Results Using Trees
 - Read or Write(Classification)
 - Address(Regression)
- Results Using RNNS
 - Read or Write
- Clustering
- Conclusion/Future Work

Predict is_write (RNN)

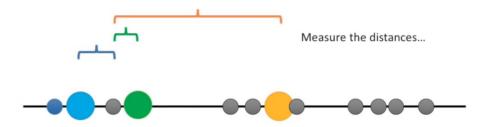


Red = Input Layer (is_sve, size_in_bytes, address)

Pink = Hidden Layer (nonlinear transformations on inputs)

Purple = Output Layer

Predict is_write (RNN)

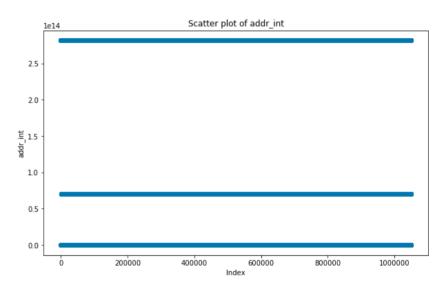


• RNN = 79.9% Accuracy

- Tools Used
- Basic Overview of the data
- Prediction Types
 - Classifications vs Regression
- Methods of Predicting
 - Data Splitting
 - Trees
 - RNN
- Results Using Trees
 - Read or Write(Classification)
 - Address(Regression)
- Results Using RNNS
 - Read or Write
- Clustering
- Conclusion/Future Work

Clustering

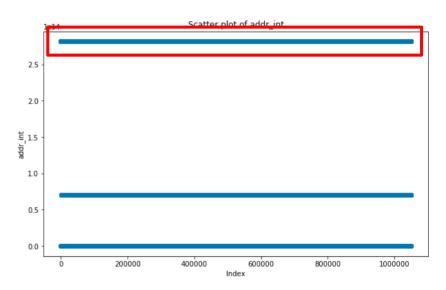
- Clustering
 - K-means most effective
 - Several Others
 - Affinity Propagation
 - SVM
 - DBSCAN


```
centers = km.cluster_centers_
print(centers)

[[4.52325600e+06]
  [2.81474977e+14]
  [7.03687779e+13]]
```

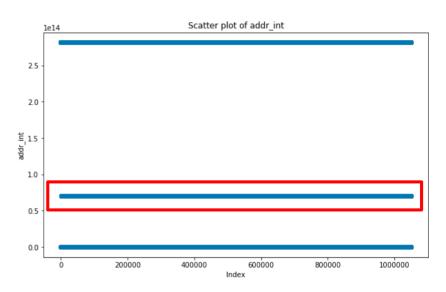
Provide number of clusters

```
centers = km.cluster_centers_
print(centers)


[[4.52325600e+06]
  [2.81474977e+14]
  [7.03687779e+13]]
```

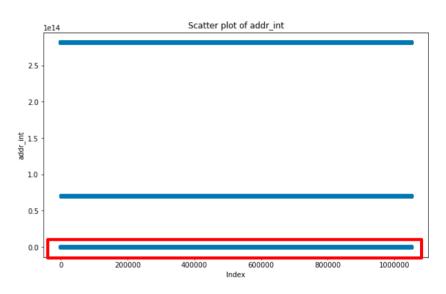

Graph Shows Addresses Accessed

```
centers = km.cluster_centers_
print(centers)


[[4.52325600e+06]
  [2.81474977e+14]
  [7.03687779e+13]]
```


Centers Match with graph

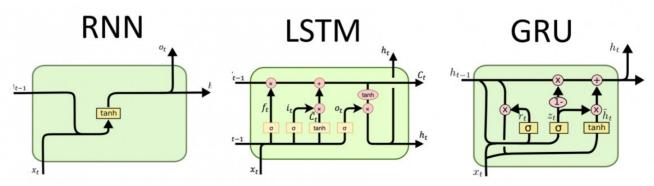
```
centers = km.cluster_centers_
print(centers)


[[4.52325600e+06]
  [2.81474977e+14]
  [7.03687779e+13]]
```


Centers Match with graph

```
centers = km.cluster_centers_
print(centers)

[[4.52325600e+06]
  [2.81474977e+14]
  [7.03687779e+13]]
```



Centers Match with graph

- Tools Used
- Basic Overview of the data
- Prediction Types
 - Classifications vs Regression
- Methods of Predicting
 - Data Splitting
 - Trees
 - RNN
- Results Using Trees
 - Read or Write(Classification)
 - Address(Regression)
- Results Using RNNS
 - Read or Write
- Clustering
- Conclusion/Future Work

To Conclude

- Early Stages
 - Reasonable predictions on individual traces
 - One Trace is not sufficient.
- Moving Forward
 - Different NNs (LSTM)
 - Alter and expand training and testing data

