
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Exploring the Feasibility of In-Line
Compression on HPC Mini-Apps

Dakota Fulp
LANL Mentor: Dr. Laura Monroe

Clemson Mentor: Dr. Jon C. Calhoun
August 12th 2020

LA-UR-20-26131

Presenter
Presentation Notes
TODO: Add Slide NumbersTODO: Add transitions

2

Overview
• Background

– ASC BML Inexact Computing Project
– Lossy Compression
– In-Line Lossy Compression
– ZFP’s Fixed-Rate Mode

• Implementation
• Experimental Setup
• Effects of In-Line Compression

– Accuracy
– Storage
– Throughput

• Conclusions
• Extending Our Work

3

ASC BML Inexact Computing Project
Present technology is not capable of doubling the number of
transistors in integrated circuits every two years

Moore’s Law is coming to an end

New forms of advancement needed

Inexact computing trades precision for:
– Gains in computing efficiency
– Significant energy savings

This project aims to:
– Help teams adapt to the end of Moore’s law
– Improve computation efficiency in mission codes
– Integrate efforts in future codes and platforms

Presenter
Presentation Notes
ASC = Advanced Simulation and ComputingBML = Beyond Moore’s LawInexact computing is gaining traction: Reduced precision hardware development Field of research is growingInexact computing requires domain knowledge: Will inexact computing work with the application/architecture? Can the application/architecture leverage inexact computing? When and how is implementing reduced precision worth the effort?

4

Lossy Compression
Form of approximate computing

Uses inexact approximations to reduce overall data size

Inaccuracies controlled via error bounding metrics

Example:

Many different lossy compression algorithms:

ZFP

Before Lossy
Compression:

After Lossy
Compression:

Absolute Error Bound: 0.123.0348327
10.99
51.1

23.0
10.9
51.1

Presenter
Presentation Notes
JPEG: Uses a discrete cosine transformation to convert a 2D image to the frequency domain.Then quantizes the frequencies into a finite number of bins.MP3: Compresses by removing frequencies that are unlikely to be heard or impact sound quality.ZFP: Utilizes orthogonal block transformations and embedded coding.

5

In-Line Lossy Compression
Compress individual floating-point arrays within an application

Useful in reducing active memory footprint during runtime

Two types of in-line compression:
– Full: All data must be decompressed to access any data value
– Partial: Only a chunk of data must be decompressed to access a data value

Partial in-line compression:
– Less overhead to access data values
– Not all compression algorithms compatible

This work focuses on partial in-line compression

Presenter
Presentation Notes
While Partial decompression requires less work to access valuesIt is limited as not all forms of compression are able to be partialDue to the layout and dependencies of the compressed data

6

ZFP Fixed-Rate Lossy Compression
ZFP’s fixed-rate mode enables partial in-line compression:

– Data divided into 4d sized blocks, where d = dimensionality
– User defined rate determines compressed size of data blocks
– Each block can be decompressed independent of any other block

1-D Double Array Example:
Rate = 48:

192 Bits Per Compressed Block

Rate = 16:

64 Bits Per Compressed Block

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐵𝐵𝐵𝐵𝐶𝐶𝐵𝐵𝐵𝐵_𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 ∗ 4𝑑𝑑 𝐶𝐶 = 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝑑𝑑𝐶𝐶𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑𝐵𝐵𝑆𝑆𝑑𝑑𝑑𝑑

Higher Precision

H
ig

he
r C

om
pr

es
si

on
64

8

32

48

16

Presenter
Presentation Notes
Full in-line compression is capable of using any compression algorithm while partial in-line compression can only be done with some compression algorithmsDue to the layout and dependencies of the compressed data.Partial decompression requires less work to access items in the data but is limited as not all forms of compression are able to be partial.

7

Experimental Setup
LANL HPC Mini-Apps

– PENNANT:
• Unstructured mesh mini-app
• Fewer large floating-point arrays

– Branson:
• Monte Carlo transport mini-app
• Many smaller floating-point arrays

ZFP Rates
– 64.0, 48.0, 32.0, 16.0, 8.0

Input Files
– Sedov: Sedov-Taylor expansion
– Cube: Cube decomposition transport mesh

System
– Potatohead Cluster: 8 Intel Xeon CPU’s 126GB RAM

Sedov-Taylor Expansion Example

Particle Transport Mesh Example

Presenter
Presentation Notes
PENNANT is an unstructured mesh physics mini-app designed for advanced architecture research and contains code adapted from the LANL rad-hydro code FLAGPENNANT = Highly contiguous dataBranson is a Monte Carlo transport mini-app for studying new parallel algorithms and currently contains particle passing and mesh passing methods for domain decompositionBranson = Highly non-contiguous dataThese two mini-apps were chosen as they’re from different domains and have vastly different code structures which enable a better analysis of zfp arraysUsing this distribution of rates, the effects of different rates can be foundSedov which is an adiabatic expansion phase in the life cycle of supernova

8

Extra steps needed when replacing object arrays

Improved vector datatype support needed

Implementation
Replace all standard floating-point arrays with ZFP arrays

Original
class Mesh {

double* x;
}
x = std::malloc(25 * sizeof(double));

Original
double* x = std::malloc(25 * sizeof(double));

ZFP Array
zfp::array1<double> x(25, rate);

ZFP Array
class Mesh {

zfp::array1<double> x;
}
x.set_rate(rate);
x.resize(25);

Presenter
Presentation Notes
Similar to vectors, a resize function is used to adjust the overall size However, this resize function destroys all data on a resize, thus making zfp arrays currently incompatible with vectorsTODO: Put them into side by side blocks

9

Implementation
Convert back to standard floating-point arrays before MPI calls

Causes unnecessary overhead, reducing productivity

Currently developing MPI and OpenMP support

Create temporary array
double* tmp_x = std::malloc(25 * sizeof(double));
for (int i = 0; i < 25; i++){

tmp_x[i] = x[i]
}

Make MPI calls
MPI_Send(&tmp_x, 25, MPI_DOUBLE, 1, 0, MPI_COMM_WORLD);

Copy temporary array back to original
for (int i = 0; i < 25; i++){

x[i] = tmp_x[i]
}

Presenter
Presentation Notes
As ZFP arrays do not have a standard MPI Datatype to interface with, we converted back to standard datatypes before MPI calls.This causes unnecessary overhead and can be fixed with OpenMP or aStandard MPI Datatype for ZFP compressed arraysHowever, ZFP arrays also do not work with OpenMP currently due to race conditions

10

Effects of In-Line Compression
Accuracy:

– Results gathered at set cycle counts
– Peak Signal-to-Noise Ratio (PSNR) used to quantify data quality

Storage:
– Compare size of original floating-point arrays with new ZFP arrays
– Determine the compression ratio

Throughput:
– Compare original runtime with:

• ZFP-based application running with MPI
• ZFP-based application running without MPI

𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃 = 20 ∗ log10((𝐶𝐶𝑑𝑑𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐶𝐶𝑆𝑆𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)/𝑃𝑃𝑅𝑅𝑆𝑆𝑅𝑅)

11

Effects on Accuracy

As more application cycles are completed, the data quality
becomes less stable and begins to degrade

Due to propagation of inaccuracies

0

20

40

60

80

100

120

140

100 200 300 400 500

D
AT

A
Q

U
AL

IT
Y

(P
SN

R
)

CYCLES COMPLETED

PENNANT: Data Integrity

0

20

40

60

80

100

120

140

5 10 15 20 25
D

AT
A

Q
U

AL
IT

Y
(P

SN
R

)
CYCLES COMPLETED

Branson: Data Integrity

Rate:

12

Effects on Accuracy

ZFP array quality logarithmically degrades over time

Presenter
Presentation Notes
Logarithmically degrades since PSNR is based on log 10It was also seen that as time progressed, the RMSE between the original data and the zfp array grew in a linear styled trend

13

Effects on Storage

Larger ZFP arrays and lower ZFP rates result in higher levels of
compression

Compression ratios range from 0.796x to 3.983x

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

8 16 32 48 64

C
om

pr
es

si
on

 R
at

io

Rate

Compression Ratio By Rate

PENNANT (Larger ZFP Arrays) Branson (Smaller ZFP Arrays)

14

Effects on Time

Overhead grows as cycles completed grows and is more
prominent with higher rates

MPI reduces ZFP overhead even with conversion overhead

0
5

10
15
20
25
30
35
40
45

100 200 300 400 500

O
VE

R
H

EA
D

 R
AT

IO

CYCLES COMPLETED

MPI PENNANT: Overhead

0
5

10
15
20
25
30
35
40
45

100 200 300 400 500

O
VE

R
H

EA
D

 R
AT

IO

CYCLES COMPLETED

Serial PENNANT: Overhead

Rate:

15

Effects on Time

0

5

10

15

20

25

30

5 10 15 20 25

O
VE

R
H

EA
D

 R
AT

IO

CYCLES COMPLETED

MPI Branson: Overhead

1.94
1.96
1.98

2
2.02
2.04
2.06
2.08

2.1

5 10 15 20 25

O
VE

R
H

EA
D

 R
AT

IO

CYCLES COMPLETED

Serial Branson: Overhead

Rate:

MPI overhead higher than PENNANT due to strong use of MPI

Serial overhead much lower than PENNANT due to many
smaller ZFP arrays being used

Presenter
Presentation Notes
Overhead is consistent due to MPI overhead

16

Conclusions

ZFP array quality degrades
logarithmically over time

Larger ZFP arrays and lower ZFP
rates result in higher compression
ratios

0

10

20

30

5 10 15 20 25

MPI Overhead

2
2.02
2.04
2.06
2.08

5 10 15 20 25

Serial Overhead Time overhead depends on data
layout and MPI usage with smaller
ZFP arrays demonstrating less
additional overhead

ZFP arrays require improvements and optimizations in order
to be viable on HPC applications

Rate

Cycles Completed

C
om

pr
es

si
on

 R
at

io
PS

N
R

Presenter
Presentation Notes
Overall, ZFP arrays require improvements and optimizations to be viable on HPC applications

17

Extending Our Work

•Continue development of standard MPI datatype

•Resolve OpenMP race condition

• Improve ZFP API through improved vector support

•Profile the memory costs of using ZFP compressed arrays

18

Acknowledgements
Laura Monroe, LANL Mentor, lmonroe@lanl.gov

Jon Calhoun, Collaborator Mentor, jonccal@clemson.edu

ASC BML Project Team

USRC

NMC

Julie Wiens

Questions?

	Exploring the Feasibility of In-Line Compression on HPC Mini-Apps
	Overview
	ASC BML Inexact Computing Project
	Lossy Compression
	In-Line Lossy Compression
	ZFP Fixed-Rate Lossy Compression
	Experimental Setup
	Implementation
	Implementation
	 Effects of In-Line Compression
	Effects on Accuracy
	Effects on Accuracy
	Effects on Storage
	Effects on Time
	Effects on Time
	Conclusions
	Extending Our Work
	Acknowledgements

