
Easier JupyterLab Instances for HPC Users 
 Currently, HPC users wanting to use a JupyterLab instance have one of two options, and 
both involve tunneling the JupyterLab session over an SSH connection. The easiest method is to 
launch the JupyterLab instance on a front-end node, but the downside to this is that the front-end 
nodes are shared amongst users, so self-restraint of consuming computational resources in the 
JupyterLab instance is required on the user’s part. The other is to tunnel the JupyterLab instance 
from an interactive SLURM allocation. This second option is cumbersome as it requires a 
"double tunnel" over two SSH connections, and the issue of lack of immediacy if the interactive 
job can’t be granted at submission time. We would like to make it much easier for HPC users to 
have JupyterLab instances on our HPC resources. First, we opted to use Apache Mesos, a cluster 
manager, to host JupyterLab instances and run their corresponding jobs on its worker nodes. 
However, due to lack of support for Apache Mesos, we’ve recently opted to use a JupyterLab 
platform powered by Jupyter Enterprise Gateway (JEG) on a Kubernetes cluster. JEG provides 
optimal resource allocations by enabling Jupyter kernels to be launched in their own Kubernetes 
pods, allowing notebooks to use minimal resources. By default, Jupyter runs kernels locally - 
potentially exhausting the server of resources. By leveraging the functionality of Kubernetes, 
JEG distributes kernels across the compute cluster, dramatically increasing the number of 
simultaneously active kernels. In this talk, we make the case for a JEG-on-Kubernetes system to 
provide JupyterLab sessions for our HPC users. 
 
 
 
 
 
 
 
 
 
LA-UR: LA-UR-20-25758 
 
 

 

 

 


