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Introduction
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Hydrodynamics

§ Hydrodynamics is the subsection of Fluid 
Dynamics that studies the flow of liquids

§ Used in many areas of study and application
– Ocean Currents
– Blood Flow
– Rocket Engines
– More

§ These problems often not have known analytical 
solutions…

§ Example: Navier-Stokes Equations
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Direct Numerical Simulation (DNS)

Slide 5

§ DNS is used to find solutions to hydrodynamic 
(and other) problems with no known analytical 
solutions

§ Uses numerical methods to compute accurate 
approximations of the solutions

§ Often is computationally intensive and requires 
extensive computational resources
– Requires High Performance Computing (HPC)
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HPC, Faults, and Anomalies

Slide 6

§ HPC Clusters tend to have large amounts of 
computational resources such as CPUs, Memory, and 
more

§ There is a significant probability of memory faults at the 
high scales found in HPC

§ Some faults could simply cause job failure, but others 
may cause silent data corruption (SDC) anomalies 
– Costly

§ It’s also possible for anomalies to come from other 
sources
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Anomaly Detection

§ Computer-Vision techniques have been used to detect 
anomalies in images
– Concrete Deficiencies
– Skin Diseases
– More

§ One approach is reconstruction loss
– Train an autoencoder to recreate nominal images
– If the autoencoder is unable to recreate an image, it is 

likely anomalous
§ We applied this idea to hydrodynamic simulations
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Methodology
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Dataset

§ We created a dataset of simulations using a 
tool called CLAMR
– Simulations of the shallow water equation

§ Consists of 459 pairs of simulations
– Nominal and anomalous
– 100 frames each
– Varies on mesh size, domain size, and 

initial state
§ Each of the 100 frames was turned into an 

image
– 128x128 pixels

One simulation from the dataset
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Method

§ Reconstruction Loss Anomaly Detection
– Train a model to reconstruct nominal data
• Usually using an autoencoder

– If an input is anomalous, the autoencoder 
should fail to create an accurate 
reconstruction

– Train a classifier to determine if the error 
between the input and reconstruction 
implies anomalous input

A comparison of differences
Baseline – CNN
Baseline – Anomaly
CNN – Anomaly
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Methods (cont.)

§ Predictive Reconstruction
– Since an anomaly may have the same ”shapes” as 

nominal data, we modified the technique

§ Predict a subsequent frame based off the 
previous two frames

§ Find the difference between the prediction and 
the same frame from the simulation

§ Relies on model learning how to progress the 
simulation rather than learning nominal 
reconstructions
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Autoencoders

§ We tried two traditional autoencoders
– Baseline feed-forward ANN
– Convolutional

§ Both predict a frame given the frame two timesteps back

ANN Autoencoder Structure

CNN Autoencoder Structure
Encoder (top) and decoder (bottom)
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PetaVision

§ We also used PetaVision, a neuromorphic sparse coder
§ Has been used for impressive computer vision problems
§ Learned a Spatiotemporal Dictionary for predicting a 

frame given the two previous frames

Illustration of how PetaVision reconstructs images
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Predictions

§ Each autoencoder achieved different levels of 
reconstruction
– ANN failed to recreate the proper shapes, colors, and 

patterns
– CNN achieved correct colors but the shapes were not 

sharp
– PetaVision learned accurate shape reconstructions 

but the coloring was off
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Classification

§ In order to classify anomalous frames, we converted the 
images to feature vectors and computer the difference

§ Analysis showed that there were often differences in the 
blue channel

§ We found that one set of blue features in particular were 
found in the anomalies

Feature Vector Differences Represented as Histograms
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Classification (cont)

§ We trained a Gradient Boosted Decision Tree 
(GBDT) Classifier 
– Also tried random forest and multi-layer perceptron 

but they performed worse

§ We used the feature vector differences as input
– 3 channels X 256 color values = 768 features

§ Each Autoencoder was paired with its own 
classifier
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Conclusions
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Results

§ Overall we got very similar classification 
performance regardless of autoencoder

§ The classifier achieved impressive metrics 
(~0.97 AUC)

§ This was surprising considering the difference in 
frame predictions

LA-UR-21-27175



Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Conclusions

§ Despite differences in predictions, we achieved 
very good classification results

§ Using a random forest we discovered that only a 
small subset of features seemed to attribute to 
the classification
– That blue spike seen in the histograms earlier

§ Our dataset may have been too “easy” for the 
classification, but this is still a good first step
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Next Steps

§ Generate a new dataset of more complex 
simulations

§ Look at more computer vision techniques
– PetaVision has potential we did not use here

§ Find different types of anomalies that may 
appear

§ Trace an anomaly through timesteps if possible
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