

LA-UR-21-27108

Approved for public release; distribution is unlimited.

Title:	Tropical Matrix Factorization
Author(s):	Ortiz, Jose Angel
Intended for:	HPC Showcase, 2021-07-22 (Online, New Mexico, United States)

Issued: 2021-07-21

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. technical correctness.

Introduction 000	Tropical Matrices		New Approach 00		Extras 0000000
		·	·		· · · · · · · · · · · · · · · · · · ·

Tropical Matrix Factorization

Jose Ortiz

Introduction •00	Tropical Matrices	Okay, but why? O	New Approach 00	Example 0000000	Results 0	References	Extras 0000000
Introduct	tion						

Replacing addition with maximum (or minimum) and swapping multiplication with addition gives the tropical numbers T = (ℝ, ⊕, ⊙).

 Classical Setting
 Tropical Setting

 1+0=1 $1\oplus 0 := \max(1,0) = 1$

 1+1=2 $1\oplus 1 := \max(1,1) = 1$

 1+2=3 $1\oplus 2 := \max(1,2) = 2$

Introduction ○●○	Tropical Matrices	Okay, but why? 0	New Approach 00	Example 0000000	Results 0	References	Extras 0000000
Introduct	tion						

• Compared to addition and multiplication, comparison and addition are faster.

Introduction ○●○	Tropical Matrices	Okay, but why? o	New Approach 00	Example 0000000	Results 0	References	Extras 0000000
Introduct	tion						

- Compared to addition and multiplication, comparison and addition are faster.
- Comparison and addition are **robust** operations.

Introduction ○●○	Tropical Matrices	Okay, but why? 0	New Approach 00	Example 0000000	Results 0	References	Extras 0000000
Introduct	tion						

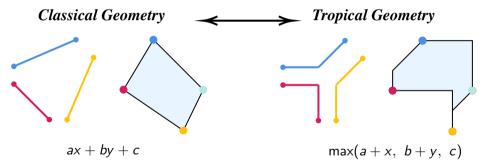
- Compared to addition and multiplication, comparison and addition are faster.
- Comparison and addition are **robust** operations.
- Moving between classical and tropical settings is often reversible.
 - Classical \rightarrow Tropical: Easy

Introduction 00●	Tropical Matrices	Okay, but why? O	New Approach	Example 0000000	Results 0	References	Extras 0000000
Introduct	tion						

• **Tropical geometry** deals with how this change in arithmetic affects the underlying geometry and related structures.

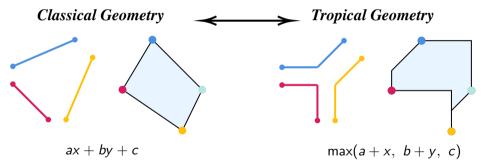
Introduction 00●	Tropical Matrices	Okay, but why? O	New Approach	Example 0000000	Results 0	References	Extras 0000000
Introduct	tion						

• **Tropical geometry** deals with how this change in arithmetic affects the underlying geometry and related structures.



Introduction 00●	Tropical Matrices	Okay, but why? O	New Approach	Example 0000000	Results 0	References	Extras 0000000
Introduct	tion						

• **Tropical geometry** deals with how this change in arithmetic affects the underlying geometry and related structures.



• This project was an exploration of how tropical methods could be applied to inexact computing.

Introduction 000	Tropical Matrices ●○	Okay, but why? O	New Approach	Example 0000000	Results 0	References	Extras 0000000
Tropical	Matrices						

Introduction	Tropical Matrices	Okay, but why?	New Approach	Example	Results	References	Extras
000	●○	0	00	0000000	0		0000000
Tropical	Matrices						

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \odot \begin{bmatrix} 5 & 3 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} \max(1+5,2+2) & \max(1+3,2+0) \\ \max(3+5,4+2) & \max(3+3,4+0) \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ 8 & 6 \end{bmatrix}$$

Introduction	Tropical Matrices	Okay, but why?	New Approach	Example	Results	References	Extras
000	●○	0	00	0000000	0		0000000
Tropical	Matrices						

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \odot \begin{bmatrix} 5 & 3 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} \max(1+5,2+2) & \max(1+3,2+0) \\ \max(3+5,4+2) & \max(3+3,4+0) \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ 8 & 6 \end{bmatrix}$$

• Perturbing some of the entries may not affect the product:

Introduction	Tropical Matrices	Okay, but why?	New Approach	Example	Results	References	Extras
000	●○	O	00	0000000	0		0000000
Tropical	Matrices						

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \odot \begin{bmatrix} 5 & 3 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} \max(1+5,2+2) & \max(1+3,2+0) \\ \max(3+5,4+2) & \max(3+3,4+0) \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ 8 & 6 \end{bmatrix}$$

• Perturbing some of the entries may not affect the product:

$$\begin{bmatrix} \mathbf{1} & \mathbf{3} \\ \mathbf{3} & \mathbf{4} \end{bmatrix} \odot \begin{bmatrix} \mathbf{5} & \mathbf{3} \\ \mathbf{2} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \max(\mathbf{1} + \mathbf{5}, \mathbf{3} + \mathbf{2}) & \max(\mathbf{1} + \mathbf{3}, \mathbf{3} + \mathbf{0}) \\ \max(\mathbf{3} + \mathbf{5}, \mathbf{4} + \mathbf{2}) & \max(\mathbf{3} + \mathbf{3}, \mathbf{4} + \mathbf{0}) \end{bmatrix} = \begin{bmatrix} \mathbf{6} & \mathbf{4} \\ \mathbf{8} & \mathbf{6} \end{bmatrix}$$

Introduction	Tropical Matrices	Okay, but why?	New Approach	Example	Results	References	Extras
000	●○	0	00	0000000	0		0000000
Tropical	Matrices						

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \odot \begin{bmatrix} 5 & 3 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} \max(1+5,2+2) & \max(1+3,2+0) \\ \max(3+5,4+2) & \max(3+3,4+0) \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ 8 & 6 \end{bmatrix}$$

• Perturbing some of the entries may not affect the product:

$$\begin{bmatrix} \mathbf{1} & \mathbf{3} \\ \mathbf{3} & \mathbf{4} \end{bmatrix} \odot \begin{bmatrix} \mathbf{5} & \mathbf{3} \\ \mathbf{2} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \max(\mathbf{1} + \mathbf{5}, \mathbf{3} + \mathbf{2}) & \max(\mathbf{1} + \mathbf{3}, \mathbf{3} + \mathbf{0}) \\ \max(\mathbf{3} + \mathbf{5}, \mathbf{4} + \mathbf{2}) & \max(\mathbf{3} + \mathbf{3}, \mathbf{4} + \mathbf{0}) \end{bmatrix} = \begin{bmatrix} \mathbf{6} & \mathbf{4} \\ \mathbf{8} & \mathbf{6} \end{bmatrix}$$

• Many entries could be changed without affecting the product.

Introduction 000	Tropical Matrices ●○	Okay, but why? 0	New Approach	Example 0000000	Results 0	References	Extras 0000000
Tropical	Matrices						

$$\begin{bmatrix} \mathbf{1} & \mathbf{2} \\ 3 & 4 \end{bmatrix} \odot \begin{bmatrix} \mathbf{5} & 3 \\ \mathbf{2} & 0 \end{bmatrix} = \begin{bmatrix} \max(\mathbf{1} + \mathbf{5}, \mathbf{2} + \mathbf{2}) & \max(\mathbf{1} + 3, \mathbf{2} + 0) \\ \max(3 + 5, 4 + 2) & \max(3 + 3, 4 + 0) \end{bmatrix} = \begin{bmatrix} \mathbf{6} & 4 \\ 8 & 6 \end{bmatrix}$$

• Perturbing some of the entries may not affect the product:

$$\begin{bmatrix} \mathbf{1} & \mathbf{3} \\ \mathbf{3} & \mathbf{4} \end{bmatrix} \odot \begin{bmatrix} \mathbf{5} & \mathbf{3} \\ \mathbf{2} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \max(\mathbf{1} + \mathbf{5}, \mathbf{3} + \mathbf{2}) & \max(\mathbf{1} + \mathbf{3}, \mathbf{3} + \mathbf{0}) \\ \max(\mathbf{3} + \mathbf{5}, \mathbf{4} + \mathbf{2}) & \max(\mathbf{3} + \mathbf{3}, \mathbf{4} + \mathbf{0}) \end{bmatrix} = \begin{bmatrix} \mathbf{6} & \mathbf{4} \\ \mathbf{8} & \mathbf{6} \end{bmatrix}$$

- Many entries could be changed without affecting the product.
- The usual factorization techniques don't work here.

Introduction	Tropical Matrices	Okay, but why?	New Approach	Example	Results	References	Extras
000	○●	0	00	0000000	0		0000000
Matrix F	actorization						

Introduction	Tropical Matrices	Okay, but why?	New Approach	Example	Results	References	Extras
000	⊙●	0	00	0000000	0		0000000
Matrix F	actorization						

- Only two known methods can tackle this problem:
 - Tropical Matrix Factorization (1997) [1]:
 - First known approach
 - Applied to discrete event systems
 - Convergence is guaranteed and is a polynomial-time method

Introduction	Tropical Matrices	Okay, but why?	New Approach	Example	Results	References	Extras
000	⊙●	0	00	0000000	0		0000000
Matrix F	actorization						

- Only two known methods can tackle this problem:
 - Tropical Matrix Factorization (1997) [1]:
 - First known approach
 - Applied to discrete event systems
 - Convergence is guaranteed and is a polynomial-time method
 - Sparse Tropical Matrix Factorization (2021) [3]:
 - Modification of TMF that introduces sparsity
 - Applied to matrix completion and prediction tasks
 - Convergence and complexity are inherited from TMF

Introduction	Tropical Matrices	Okay, but why?	New Approach	Example	Results	References	Extras
000	○●	0	00	0000000	0		0000000
Matrix F	actorization						

- Only two known methods can tackle this problem:
 - Tropical Matrix Factorization (1997) [1]:
 - First known approach
 - Applied to discrete event systems
 - Convergence is guaranteed and is a polynomial-time method
 - Sparse Tropical Matrix Factorization (2021) [3]:
 - Modification of TMF that introduces sparsity
 - Applied to matrix completion and prediction tasks
 - Convergence and complexity are inherited from TMF
- Both are very slow, but great at capturing non-linear structures.

Introduction 000	Tropical Matrices	Okay, but why? •	New Approach 00	Example 0000000	Results 0	References	Extras 0000000
Benefits	of Working	in This Set	ting				

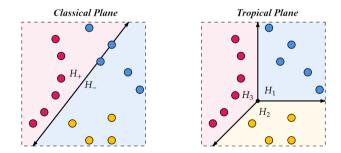
• Tropical arithmetic is **fast** and **robust**.

Introduction 000	Tropical Matrices	Okay, but why? •	New Approach 00	Example 0000000	Results 0	References	Extras 0000000
Benefits	of Working	in This Set	ting				

- Tropical arithmetic is **fast** and **robust**.
- Tropical methods can encode data with 'extreme' values.

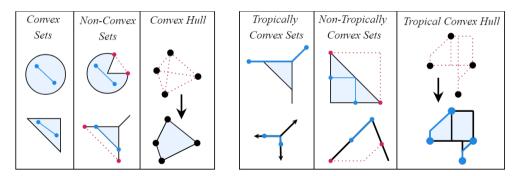
Introduction 000	Tropical Matrices	Okay, but why? ●	New Approach 00	Example 0000000	Results 0	References	Extras 0000000
Benefits	of Working	in This Set	ting				

- Tropical arithmetic is **fast** and **robust**.
- Tropical methods can encode data with 'extreme' values.
- Tropical hyperplanes separate the ambient space into *n* + 1 regions–**encoding more information with fewer parameters**.



Introduction 000	Tropical Matrices	Okay, but why? o	New Approach ●0	Example 0000000	Results 0	References	Extras 0000000
A Geome	etric Approa	ch to Matri	x Factoriza	ntion			

- Key observation:
 - The columns (or rows) of M can be identified with points that generate a tropical convex hull tconv(M).



Introduction 000	Tropical Matrices	Okay, but why? o	New Approach ○●	Example 0000000	Results 0	References	Extras 0000000
A Geome	etric Approa	ch to Matri	ix Factoriza	ntion			

• This approach **leans on known methods** for computing convex hulls in the classical setting, which are very fast.

Introduction 000	Tropical Matrices	Okay, but why? 0	New Approach ⊙●	Example 0000000	Results 0	References	Extras 0000000
A Geom	etric Approa	ch to Matr	ix Factoriza	tion			

- This approach **leans on known methods** for computing convex hulls in the classical setting, which are very fast.
- The special case described in this talk allows for significantly faster factorization.

Introduction Tropical Matrices Okay, but why? New Approach Example Ocoococo Constraints Factorization Constraints Factorization

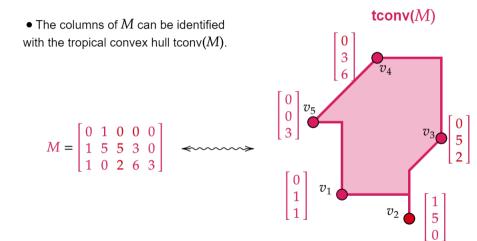
- This approach **leans on known methods** for computing convex hulls in the classical setting, which are very fast.
- The special case described in this talk allows for significantly faster factorization.
- The left factor A that results from this method is **stable under translations** of *M*; only *B* varies as *M* is perturbed.

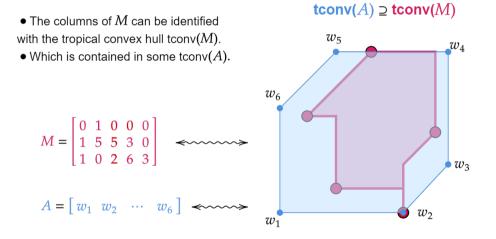
Introduction Tropical Matrices Okay, but why? New Approach Example OCONOCO Results References Extras

- This approach **leans on known methods** for computing convex hulls in the classical setting, which are very fast.
- The special case described in this talk allows for significantly faster factorization.
- The left factor A that results from this method is **stable under translations** of *M*; only *B* varies as *M* is perturbed.
- This approach **can be modified** such as with STMF in order to be applied to prediction tasks.

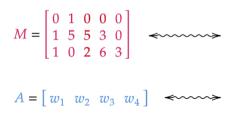
Introduction Tropical Matrices Okay, but why? New Approach Example OCONOCO Results References Extras

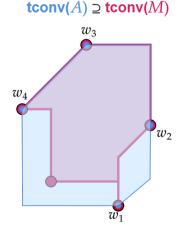
- This approach **leans on known methods** for computing convex hulls in the classical setting, which are very fast.
- The special case described in this talk allows for significantly faster factorization.
- The left factor A that results from this method is **stable under translations** of *M*; only *B* varies as *M* is perturbed.
- This approach **can be modified** such as with STMF in order to be applied to prediction tasks.
- This approach has a clear geometric interpretation.



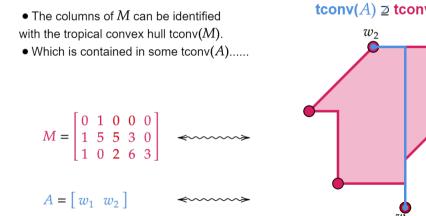


- The columns of M can be identified with the tropical convex hull tconv(M).
- Which is contained in some tconv(A)...





Introduction 000	Tropical Matrices	Okay, but why? 0	New Approach 00	Example 000●000	Results 0	References	Extras 0000000
Overvie	w of the Geo	metric Met	hod				

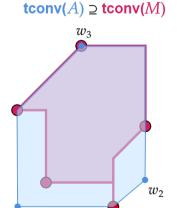


Introduction 000	Tropical Matrices	Okay, but why? 0	New Approach 00	Example 0000●00	Results 0	References	Extras 0000000
Overvie	w of the Cec	metric Met	hod				

Geometric ешоа

- The columns of M can be identified with the tropical convex hull tconv(M).
- Which is contained in some tconv(A).
- There is some optimal choice for A depending on the inner dimension r.

$$M = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 5 & 5 & 3 & 0 \\ 1 & 0 & 2 & 6 & 3 \end{bmatrix} \quad \longleftrightarrow \quad A = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 5 & 3 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 5 & 3 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 5 & 3 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 6 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \longleftrightarrow \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix}$$



 w_1

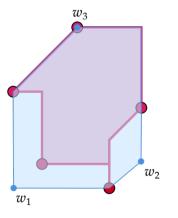
Introduction 000	Tropical Matrices	Okay, but why? 0	New Approach 00	Example 00000●0	Results 0	References	Extras 0000000
Overvie	w of the Goo	motric Mot	had				

Overview of the Geometric Method

- The columns of M can be identified with the tropical convex hull tconv(M).
- Which is contained in some tconv(A).
- There is some optimal choice for A depending on the inner dimension r.
- For each v_i , compute the solutions to $A \odot b_i = v_i$ to form B.

$$\begin{array}{c} A \odot B = M \\ \begin{bmatrix} 1 & 0 & 0 \\ 1 & 5 & 3 \\ 0 & 0 & 6 \end{bmatrix} \odot \begin{bmatrix} b_1 & \cdots & b_5 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 5 & 5 & 3 & 0 \\ 1 & 0 & 2 & 6 & 3 \end{bmatrix}$$

 $tconv(A) \supseteq tconv(M)$



[2]

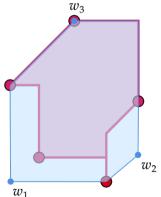
Introduction 000	Tropical Matrices	Okay, but why? 0	New Approach 00	Example 000000●	Results 0	References	Extras 0000000
Overvie	w of the Coc	motric Mot	had				

IOU

- The columns of M can be identified with the tropical convex hull tconv(M).
- Which is contained in some tconv(A).
- There is some optimal choice for A depending on the inner dimension r.
- For each v_i , compute the solutions to $A \odot b_i = v_i$ to form *B*.

$$\begin{array}{c} A \odot B = M \\ \begin{bmatrix} 1 & 0 & 0 \\ 1 & 5 & 3 \\ 0 & 0 & 6 \end{bmatrix} \odot \begin{bmatrix} -1 & 0 & -1 & -1 & -1 \\ 4 & 0 & 0 & -2 & -5 \\ -5 & -6 & -4 & 0 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 5 & 5 & 3 & 0 \\ 1 & 0 & 2 & 6 & 3 \\ v_1 & v_2 & v_3 & v_4 & v_5 \end{array}$$

 $tconv(A) \supseteq tconv(M)$



Introduction 000	Tropical Matrices	Okay, but why? 0	New Approach 00	Example 0000000	Results ●	References	Extras 0000000
Performa	ance Results						

• Running TMF and GTMF 100 times on random 6×6 matrices:

	TMF	GTMF
Time	3.68884	0.00168
Error	5.18909	$1.21192\cdot 10^{-14}$
Added Error	0.69285	0.00039
Added Time	$+1.21192\cdot 10^{-14}$	$-5.41559\cdot 10^{-5}$

Introduction 000	Tropical Matrices	Okay, but why? 0	New Approach 00	Example 0000000	Results ●	References	Extras 0000000
Performa	nce Results						

• Running TMF and GTMF 100 times on random 6×6 matrices:

	TMF	GTMF
Time	3.68884	0.00168
Error	5.18909	$1.21192\cdot 10^{-14}$
Added Error	0.69285	0.00039
Added Time	$+1.21192\cdot 10^{-14}$	$-5.41559\cdot 10^{-5}$

• Perturbing entries of M improved speed in GTMF at minimal cost to accuracy.

Introduction 000	Tropical Matrices	Okay, but why? 0	New Approach 00	Example 0000000	Results ●	References	Extras 0000000
Performa	nce Results						

• Running TMF and GTMF 100 times on random 6×6 matrices:

	TMF	GTMF
Time	3.68884	0.00168
Error	5.18909	$1.21192\cdot 10^{-14}$
Added Error	0.69285	0.00039
Added Time	$+1.21192\cdot 10^{-14}$	$-5.41559\cdot 10^{-5}$

• Perturbing entries of M improved speed in GTMF at minimal cost to accuracy.

• Most of the error was contained to B in GTMF. A & B were affected in TMF.

Introduction 000	Tropical Matrices	Okay, but why? 0	New Approach 00	Example 0000000	Results ●	References	Extras 0000000
Performa	nce Results						

• Running TMF and GTMF 100 times on random 6×6 matrices:

	TMF	GTMF
Time	3.68884	0.00168
Error	5.18909	$1.21192\cdot 10^{-14}$
Added Error	0.69285	0.00039
Added Time	$+1.21192\cdot 10^{-14}$	$-5.41559\cdot 10^{-5}$

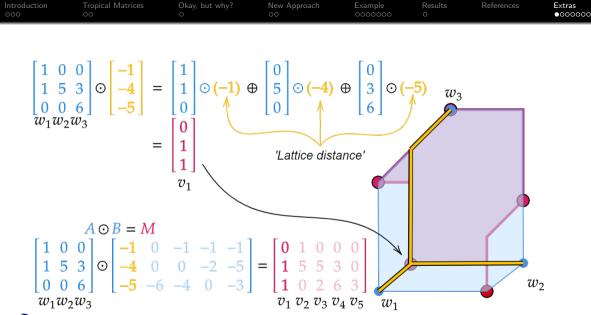
- Perturbing entries of M improved speed in GTMF at minimal cost to accuracy.
- Most of the error was contained to B in GTMF. A & B were affected in TMF.
- Questions?

Introduction 000	Tropical Matrices	Okay, but why? o	New Approach 00	Example 0000000	Results 0	References	Extras 0000000
Thank Yo	ou!						

Thanks to my mentor Laura Monroe for her guidance and to team members Vanessa Job, Nathan Kodama, Andrew Alexander, and Matthew Broussard for their helpful suggestions and questions that led me to this problem.

Email: joseaortiz@ksu.edu

- B. De Schutter, B. De Moor, Matrix Factorization and Minimal State Space Realization in the max-plus algebra, July 1997.
- P. Maragos, E. Theodosis, *Tropical Geometry and Piecewise-Linear Approximation of Curves and Surfaces on Weighted Lattices*, 2019, arXiv: 1912.03891 [cs.LG].
- A. Omanović, H. Kazan, P. Oblak, T. Curk, Sparse Data Embedding and Prediction by Tropical Matrix Factorization, Feb. 2021, (http://dx.doi.org/10.1186/s12859-021-04023-9).



Introduction 000	Tropical Matrices	Okay, but why? 0	New Approach	Example 0000000	Results 0	References	Extras o●ooooo
					7		

Introduction 000	Tropical Matrices	Okay, but why? 0	New Approach	Example 0000000	Results 0	References	Extras 00●0000
		keen and the second			7		

Introduction 000	Tropical Matrices	Okay, but why? 0	New Approach 00	Example 0000000	Results 0	References	Extras 000●000
					7 7		

Introduction 000	Tropical Matrices	Okay, but why? 0	New Approach 00	Example 0000000	Results 0	References	Extras 0000€00
					7		

Introduction 000	Tropical Matrices	Okay, but why? 0	New Approach	Example 0000000	Results 0	References	Extras 00000●0

