
Using Computational Storage
Devices: OpenMP/MPI and
Charliecloud

08/12/2021 | 1

Clyburn Cunningham IV, Justin Goldstein, Warren Hammock (USG),
Jacob Janz, Ralph Liu, Mitch Rimerman

Mentors: Shane Goff, Steve Poole, Kevin Bryant (USG)

LA-UR-21-28003

Introducing Computational Storage Devices (CSDs)

● Computational Storage → Near-data processing

● Runs software where data resides

● Potential performance improvement

○ Offload tasks from host

08/12/2021 | 2

Moving On From Previous Experiments

● Originally used Spark and HadoopFS

● Collected interesting results, but this method had its issues

○ Slow

○ Limited Application

○ Too much overhead from Spark abstraction

● Solution? Rewrite our benchmarks without Spark:

○ Serial Python

○ Serial & Parallel C++ (Combinations of OpenMP & OpenMPI)

08/12/2021 | 3

Why Serial Python?

Able to test on single core with no overhead.

Compare efficiency of different solutions.

● Implementations:

○ SparkDF & SparkSQL → Pandas (dataframes) & Numpy (matrices)

○ Natively written functions (no libraries)

○ Dataframes → Lists

08/12/2021 | 4

Experiment Results: Running on One CSD

08/12/2021 | 5

Function 100 MB (s) 200 MB (s) 500 MB (s) 1 GB (s) 5 GB (s)

Count Lines 5.4598 e -5 5.3644 e -5 5.4836 e -5 5.4836 e -5 N/A

Sum of Column 0.1135 0.2281 0.5687 1.2115 N/A

Mean of Column 3.5763 e -5 3.5048 e -5 3.5048 e -5 4.0054 e -5 N/A

Grammarian Matrix: AT*A 17.9477 35.6603 89.483 190.936 N/A

Normalize Column 5.3809 10.6566 25.6559 55.5248 N/A

Compute Mean 0.1138 0.2273 0.5676 1.2162 N/A

Compute Std Dev 3.6919 7.173 17.9616 38.0247 N/A

Count Digits 6.668 6.4407 16.0995 34.4509 N/A

Measure Shannon Entropy 343.624 650.1484 1699.7029 3576.3302 N/A

Total Elapsed Time 6.8031 Minutes 13.1948 Minutes 34.1343 Minutes 71.9462 Minutes N/A

Where to Go From Python?

Python’s Shortcomings

● Running in “parallel” is less than ideal in native Python

Using Python’s Multithreading Libraries?

● Typically accelerates one machine

● C++ implementation would be more thorough

08/12/2021 | 6

Duplicating Spark Tests in C++

● C++ is “lower level” than Pyspark or basic Python
○ Lets us get a better understanding of CSDs baseline performance

● Basic C++ Implementation is a reimplemented version of our Spark program, with a
single-threaded and a multi-threaded version using OpenMP

Single-Threaded Multi-Threaded

08/12/2021 | 7

Results

08/12/2021 | 8

Results contd.

08/12/2021 | 9

Results contd.

08/12/2021 | 10

C++ Conclusions and Thoughts

● Compared to Spark and Python, C++ implementation is a lot faster
○ Caveat: an expert with Spark or Python would likely be able to improve the performance of

those implementations
● Computational power of our CSDs seem to be much lower than the host

machine
○ Using all 4 cores of a single CSD, the job takes ~6.8x longer than using just one core on the

host machine.
○ Host also seems to scale better with increasing file size

● Resulting Question: When, if ever, would it make sense to use CSDs for
compute rather than a much-faster host?

08/12/2021 | 11

08/12/2021 | 12

Host (1.5GHz) and CSDs (1GHz)

Host: 128GB RAM (8GB swap)

Architecture: x86_64

CPU(s): 64

Thread(s) per core: 2

Core(s) per socket: 32

Socket(s): 1

CSD (x8): 5.8 GB RAM

Architecture: aarch64

CPU(s): 4

Thread(s) per core: 1

Core(s) per socket: 4

Socket(s): 1

Disclaimer: Our test was done using host system and 1 csd node (not the full 8 supported). This analysis
applies specifically to the operations used in this experiment.

Why use MPI?

Tests: Quickest scalable operations:

● Compute mean (constant time)
● Normalized Compute sum
● Normalized Compute standard deviation
● Normalized Count frequency of digits

08/12/2021 | 13

How to Offload Selected Operations?

When does it make sense to distribute our operations to
the CSD? Host and CSD reading in log file
- Tool used: stress-ng --cpu 64 --vm 1 --vm-bytes 95% (stressed RAM and core count)
- Stressed Host tested with mounted CSD storage.
- No Stress CSD tested with mounted CSD storage.

08/12/2021 | 14

Can message passing be used to decrease csd vector
build time

Issue:

● Most expensive operations for the CSD was to read file and build vector.
● Host completes those operations in 5.86(s)(stressed) 3.91(s)(no stress)
● CSD completes those operations in 23.75(s)

Test:

● 100MB/200MB/500MB/1GB/2GB log file.
● The host reads file from CSD storage and creates vector. Host will then message pass vector to csd.
● See if there is an decrease in overall time for csd to complete its operations.
● Additional parameter for mpirun --mca btl_tcp_if_include flannel.1 (includes interface)

08/12/2021 | 15

Offloading operations passing vector to CSD

- Tool used: stress-ng --cpu 64 --vm 1 --vm-bytes 95% (stressed RAM and core count)
- Stressed Host tested with mounted CSD storage.
- No Stress CSD tested with mounted CSD storage.

08/12/2021 | 16

08/12/2021 | 17

Still does not make sense on a per operation comparison

- Operation costs on a 1GB data log.
- Even after vector is in memory, the

csd still executes the operation
significantly slower than the
stressed host test.

- Future work needs to be done with
a focus on small operations. CSDs
seem to be of more use in smaller
operations on smaller files.

Future work for passing
information

- Further investigate MPI’s
usage for communication.

- Need to develop a better way
for host and csds to share
storage.

- Create a pooled storage for
CSDs, possibly ZFS.

- Data filtering
(encrypt/decrypt)

08/12/2021 | 18

CSDs with
Charliecloud

About Charliecloud
Background on experiments

Analysis of results

08/12/2021 | 19

About Charliecloud

● Bring your own software stack
○ Containers
○ Container images

■ Code
■ System tools
■ Runtime
■ Settings

● Charliecloud Images
○ Few permissions
○ Minimally affect cluster resources

08/12/2021 | 20

Build Location Storage Location

Host NVME Host NVME

Host tmpfs Host tmpfs

CSD NVME CSD NVME

CSD tmpfs CSD tmpfs

1st Experiments ● Typical workflow: Build image
on a compute node

○ (Inefficient!)
● Research Question: What is

the best filesystem to store
user images on in a cluster
environment?

○ Compare small CSD to big host
○ Compare big host to LANL’s Fog

(later)

08/12/2021 | 21

CSDs out-perform host on small image?

08/12/2021 | 22

Build Location Storage Location

NVME NVME

tmpfs NVME

NFS NFS

LUSTRE LUSTRE

tmpfs LUSTRE

tmpfs NFS

2nd Experiments
● How does our host with NVME

compare to a LANL production
setup?

○ Lustre on Fog vs
○ NFS on Fog vs
○ NVME on our host

08/12/2021 | 23

Our host

08/12/2021 | 24

NVMe vs Other Filesystems

Our host

Conclusions and Next Steps

● Future work on variability across runs
○ Implications for scaling to larger container image builds

● Viability of CSDs for medium term storage (Stability!)

● Memory restrictions of our CSDs for building large images

● Potential use case for CSDs with Charliecloud
○ Envisioning a new user workflow

08/12/2021 | 25

262608/12/2021 | 26

Overall times to complete all operations per data size

08/12/2021 | 27

Method Spark Python C++

1 CSDs 8 CSDS
Serial on

CSD
Serial on CSD

Multithread
on CSD

Host stressed and
CSD

Host stressed

100MB N/A N/A 408 s 45.47s 43.94s 36.83s 9.82s

200MB N/A N/A 792 s 90.61s 87.40s 72.51s 19.36s

500MB N/A N/A 2,048 s 229.10s 217.09s 181.97s 48.16s

1GB 2759.17s 542.44s 4,317 s 457.74s 432.54s 358.16s 94.61s

2GB N/A N/A N/A 929.60s 870.97s 714.72s 187.58s

