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Breakthrough accuracy in semi-empirical quantum 
chemistry via deep learning 

Semi-empirical electronic Hamiltonians have nearly 30 years of 
successful history modeling chemistry processes such as photon 
absorption and chemical reactivity. However, they have always 
suffered from limited accuracy and generalizability due to the use of 
static parameters fit to limited datasets. New research from Los 
Alamos National Laboratory uses a Machine Learning model to 
dynamically reparametrize Semi-empirical Hamiltonians. Allowing 
physically interpretable model parameters to be adjusted according to 
the local chemical environment both significantly increases the model 
accuracy and enables new ways of interpreting results produced by 
ML models. This new paradigm of physics informed machine learning 
seeks to revolutionize the way machine learning models are applied to 
physics problems. 

  

Figure 1: Diagram of the HIPNN+SEQM model. A neural network, HIPNN (a), generates Hamiltonian parameters 
based on a molecular configuration. These parameters are used in a semi-empirical Hamiltonian (b) to solve the 
Schrödinger equation and predict atomic properties.  
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The Science  
The full workflow of HIPNN+SEQM is 
illustrated in Fig. 1. The HIPNN architecture is a 
message passing neural network for use on 
atomistic systems. HIPNN takes the molecular 
configuration as input, where each molecule is 
represented as a set of atom types and positions. 
The input features are passed through on-site 
layers (red blocks in Fig. 1), which are applied to 
the local features for each individual atom. Then, 
this information is shared through continuous 
message-passing layers (green blocks in Fig. 1) 
which pass information between nearby atoms 
and allow atoms to see their chemical 
environments. An inference layer is applied to the 
output from each of the last on-site layers to 
obtain zero- to higher order corrections of PM3 
Hamiltonian parameters.  
 
The Hamiltonian parameters are fed into the SEQM module which uses the Self-Consistent Field 
procedure to solve the motion of electrons in the current molecular configuration. The solution of 
this problem provides full quantum information including wavefunctions, charge distributions, 
molecular energy and atomic forces. The properties predicted by the combined HIPNN+SEQM 
model generally outperform both traditional SEQM and NN results (Fig. 2). This new type of 
machine learning model will facilitate the accurate solution of complex electronic structure 
problems, such as excited state and open shell systems.  

Impact  
This work represents a significant development in both 
machine learning models and semi-empirical quantum 
mechanics. While most machine learning models are 
‘black box’ methods, the presented HIPNN+SEQM 
model provides additional physical insight through the 
parameters predicted by the NN (Fig. 3). Interestingly, 
the NN assigns different values to atomic Hamiltonian 
parameters based on traditional views of atomic 
bonding. Fig. 3 shows that if an atom forms a triple bond 
with a neighbor, it has a significantly different p-orbital 
energy parameter than if it forms a double or only single 
bonds.  
 
This new class of machine learning enhanced semi-
empirical quantum mechanics models will enable 
increasingly accurate theoretical studies of chemical 
reactivity, photo-absorption, excited state dynamics, polaritonics and other related phenomena. 

Figure 2: The combined HIPNN+SEQM model (d) makes 
significantly more accurate predictions than either the 
pure NN (c) or SEQM (a,b) models. 

Figure 3: The parameters predicted by HIPNN 
obey different distributions according to 
traditional views of chemical bonding. 
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These applications are critical to the LANL mission, either through the simulation of reactive 
molecules or simulating future organic photovoltaic systems critical to national energy security. 

Research Details 
Both the HIPNN and SEQM codes used to construct these models have been developed at LANL 
and openly released on github (see related links). HIPNN is a message passing neural network 
built capable of simulating energies, forces, atomic charges, bonding patterns, and now 
Hamiltonian parameters. PYSEQM is a semi-empirical quantum chemistry package built in 
Pytorch. Using back propagation, it is possible to optimize a neural network which parameterizes 
the Hamiltonian. Further, PYSEQM is capable of performing calculations on GPU devices and 
operating in batches. These are critical features for the machine learning tasks performed in this 
paper, but also efficient, large scale molecular excited state simulations.  
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Related Links 
HIPNN: www.github.com/lanl/HIPPYNN 
PYSEM: www.github.com/lanl/PYSEQM 
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