GlusterFS

One Storage Server to Rule Them All

Team Members:

Matthew Broomfield (New Mexico Tech) Eric Boyer (Michigan Tech) Terrell Perrotti (South Carolina State University)

Mentors:

David Kennel (DCS-1) Greg Lee (DCS-1)

Instructors: Dane Gardner (NMC) Andree Jacobson (NMC)

Outline

- Introduction to GlusterFS
- Services
- Administration
- Performance
- Conclusions
- Future Work

What is GlusterFS?

 GlusterFS is a Linux based distributed file system, designed to be highly scalable and serve many clients

ISTI

Why Use GlusterFS?

- No centralized metadata server
- Scalability
- Open Source
- Dynamic and live service modifications
- Can be used over Infiniband or Ethernet
- Can be tuned for speed and/or resilience
- Flexible administration

Where Is It Useful?

- Enterprise environments
 - Virtualization
- High Performance Computing (HPC)
- Works with Mac, Linux, and Windows clients

How Does It Work?

- Individual nodes export bricks (directories) to GlusterFS
- GlusterFS combines bricks into virtual volumes

GlusterFS Volume Types

Data Control

- GlusterFS has a built in quota service and uses POSIX ACLs for user control
- POSIX ACLs
 - Can set individual users or group permissions
- Quotas
 - Given via directory
- Both apply to Mac and windows clients (NFS/ SAMBA)

Exporting

- GlusterFS volumes can be exported via NFSv3
 - POSIX ACLs are lost when exporting directly via NFS
 - Enable POSIX ACLs by mounting via GlusterFS and exporting via NFS
- SAMBA allows Windows users to modify NTFS permissions on files

SCIENCE & TECHNOLOGY INSTITUTE

Data Support

- Snapshots
 - We used the rsnapshot utility to enable snapshots
 - Use cron jobs to specify snapshot intervals and locations
- Auditing
 - The auditd utility can be used in conjunction with GlusterFS
 - Shows detailed file interactions
- GlusterFS built-in logging support
 - Performance
 - Diagnostics
 - Events (Warnings, Errors, General Information)

Administration

- GlusterFS has an intuitive CLI
 - Allows for quick volume tuning, shrinking, and expanding while the system is online and available
 - Easily integrated into current infrastructure
- Pitfalls
 - Latency induced when mounting and exporting
 - GlusterFS mounting/unmounting occasionally hung
 - Metadata is distributed, thus harder to remove

Total Cost of Operation

- Open Source
- Can use commodity hardware
- Can use 1 or 10Gbps Ethernet

Performance Testing Key

- Base-N Distributed across N nodes
- Striped-X-N Striped across X nodes on an N node volume
- Replicated-X-N Replicated across X nodes on an N node volume
- Hybrid-X-Y-N
 Striped across X nodes, Distributed across Y nodes on an N node volume

Write Performance

GlusterFS Write Speeds with1 User in Parallel

Using The dd Command

Write Performance

GlusterFS Write Speeds with 4 Users in Parallel

Using The dd Command

Write Performance

GlusterFS Write Speeds With 8 Users in Parallel

Using The dd Command

Los Alamos

File Size

IST

Speed (MB/s)

PRObE

IST

Read Performance

GlusterFS Read Speeds with 1 User Using the dd Command

Los Alamos

Read Performance

GlusterFS Read Speeds with 4 Users in Parallel Using the dd Command

Read Performance

GlusterFS Read Speeds with 8 Users in Parallel Using the dd Command

Ls Performance

Time to Is a Recursive Directory

Fault Tolerance

• Replicated volumes can self-heal

Conclusions

- GlusterFS proved to have widespread capabilities as a virtual file system
- Scalability is very dependent upon the underlying hardware
- Lack of built-in encryption and security paradigm
- Best suited in a general purpose computing environment

Future Research

- GlusterFS over Infiniband
- Geo-replication
- Unified File and Object Storage
- Apache Hadoop
- Scalability for 1000's of nodes
- Using other filesystems on top of GlusterFS
- Testing different RAID types

Acknowledgments

- We would like to thank:
 - Los Alamos National Laboratory
 - New Mexico Consortium/PRObE
 - National Science Foundation
 - National Nuclear Security Administration
 - Gary Grider and the HPC division
 - Carol Hogsett and Josephine Olivas
 - Our mentors, David Kennel and Greg Lee
 - Our instructors, Dane Gardner and Andree Jacobson

