

Exploring the Trusted Platform Module to Establish Mutual Trust in High Performance Computing

Devon Bautista and Rebecca Whitten

August 12, 2021

Mentors: Christian Storer, J. Lowell Wofford, and Marc Santoro

LA-UR-21-28002

Bootstrapping of a Typical Stateless Cluster

Stateless = No secondary storage (e.g. hard disk)

- Parent and nodes power on
- Nodes look for and connect to parent
- Parent configures nodes and provides OS image
- Nodes boot OS image

What's to stop an adversary from imitating a node? Stealing secrets (e.g. SSH keys)?

Problem in Stateless Boot

Problem in Stateless Boot

The Problem

Mutual Trust Prove Identity mTLS* Store a key

*mTLS = mutual Transport Layer Security

 a two-way cryptographic authentication protocol

What is a TPM?

- "Trusted Platform Module"
- A secure and separate cryptoprocessor
- Defined by TCG Specification*
 - "Trusted Computing Group"
- Separate, Non-Volatile RAM
- Access controls for certain operations

*https://trustedcomputinggroup.org/work-groups/trusted-platform-module/

A discrete TPM 2.0 chip manufactured by GIGABYTE. Source:https://hothardware.com/news/microsoft-allow-bypass-windows-11-tpm-20-requirement

What Can a TPM Do?

- Securely generate keys and store them
 - RSA and ECC
 - Private key never leaves the TPM
- Perform cryptographic operations
 - Sign/Decrypt by "asking" the TPM
 - Generate random numbers
 - Hashing (e.g. SHA-256)
- Store secrets
 - In "NV Indices"
- Measure system state
 - via Platform Configuration Registers (PCR)
- Much more

Internal structure of the TPM 2.0.

Source: Trusted Computing Group, *Trusted Platform Module* (TPM) Summary

- Commands defined in specification
 - Byte stream
 - e.g. TPM2_Startup
- Trusted Software Stack (TSS)
 - TCG-specified API
- Feature API (FAPI) used for high-level communication with the TPM
- Several implementations
 - tpm2-tss (C)
 - tpm2-tools (CLI)
 - tpm2-pytss (Python)
 - go-tpm (Go)

The Trusted Software Stack, representing layers of TPM interaction with most abstract at the top to most granular at the bottom.

TPM2 Software Stack

github.com/tpm2-software

- Open Source
- Fully Implements TCG Software Stack Specification
- tpm2-tss: A C API for interacting with the TPM version 2.0
 - Provides the Feature API (FAPI), the high-level interface for interacting with the TPM
 - Also provides the System API (SAPI) and Enhanced SAPI (ESAPI), more low-level interfaces that provide 1-to-1 mappings of TPM commands specified in the TPM 2.0 specification
- tpm2-tools: Command line utilities for interacting with the TPM
 - CLI wrapper for tpm2-tss, the TPM Trusted Software Stack
 - Thorough documentation; lots of examples

TPM2 Software Stack Continued

- tpm2-tss-engine: An OpenSSL engine for TPM 2.0
 - Used for doing OpenSSL-related things with the TPM
 - E.g. Creating a CSR from a private key stored in the TPM
- **tpm2-pkcs11**: A library/specification for creating/manipulating cryptographic tokens, such as those that may be stored within a TPM
 - Needed for e.g. using the TPM to store/use SSH keys
- tpm2-pytss: Python bindings for interacting with the TPM through the ESAPI (with FAPI in progress)
 - Code is heavily transitory
 - Documentation currently does not match API
 - Difficulty setting up in CentOS
 - Chose to skip because of the above, possibly unstable (for now) API, and significant setup overhead

Go-TPM

github.com/google/go-tpm

- Golang API for the TPM 2.0
- Does not yet implement entire TCG Specification
- Less thorough documentation
- Requires Go 1.16
- Easier installation:

```
$ go get github.com/google/go-tpm/tpm2
```


How Does the TPM Address the Problem?

- Secure Storage: Able to store secrets without need for storage in disk, firmware, etc.
 - Discrete TPMs are tamper-resistant
 - A PKI for node/parent verification, independent of OS
- Independent Access Control: Storage/Operation access depends on authorization independent of the OS
 - Keys aren't used or transferred unless authorized by the TPM
 - Just because you have root doesn't mean you can access the TPM

Our Solution

Implement a mutual authentication protocol using keys/certificates stored in the TPM to bilaterally authenticate compute nodes and their parent(s).

How SSH Works Using a Keypair

Using the TPM for SSH Authentication

1. Set up PKCS#11 key database

```
$ tpm2_ptool init
```

2. Create a cryptographic token in the PKCS#11 storage

```
$ tpm2_ptool addtoken --pid 1 --label sshtok \
    --sopin <supervisor_pin> --userpin <user_pin>
```

3. Generate key pair associated with the above token

```
$ tpm2_ptool addkey --algorithm <rsa2048_or_ecc256> \
     --label sshtok --key-label <key_label> --userpin <key_pin>
```

4. Place public component of key into remote host's authorized_keys file

5. SSH into the machine using the TPM key

```
$ ssh -I /path/to/libtpm2_pkcs11.so <host>
```


Using the TPM for mTLS

Generate CA Key Pair and Certificate

```
$ openssl x509 ...
```

Create an authorization policy

```
$ tpm2_startauthsession ...
$ tpm2_policypassword ...
$ tpm2_flushcontext ...
```

Define an NV Index with authorization policy

```
$ tpm2_nvdefine -L policy -C o -s 2048 -p samplepassword 1
```

Write certificate to NV Index

```
$ tpm2_nvwrite -Q 1 -C o -i client.crt -P samplepassword
```

Lock Index from Further Writes [Optional]

```
$ tpm2_nvwritelock -C o 1
```


Future Work

- Finish mTLS implementation using the TPM
 - PoC for authenticating nodes with certificate
 - Integrate into Kraken/Layercake?
- More research/testing into NV Index policies
 - NVName policy to prevent attacker deleting and recreating index
- Using the PCR functionality to verify and attest the entire boot process

References

- [1] C. M. Lonvick and T. Ylonen, The Secure Shell (SSH) Authentication Protocol. RFC Editor, 2006. doi: 10.17487/RFC4252.
- [2] D. Goutte-Gattat, "Using a TPM for SSH authentication," Incenp.org, 03-Jan-2020. [Online]. Available: https://incenp.org/notes/2020/tpm-based-ssh-key.html. [Accessed: 22-Jul-2021].
- [3] Go-TPM (2021) [Source Code] https://github.com/google/go-tpm.
- [4] Linux TPM2 & TSS2 Software (2021) [Source Code] https://github.com/tpm2-software.
- [5] Trusted Platform Module Library Specification, Family "2.0", Level 00, Revision 01.59, Nov. 2019. [Online]. Available:
- https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
- [6] W. Arthur, D. Challenger, and K. Goldman, A Practical Guide to TPM 2.0: Using the Trusted Platform Module in the New Age of Security. Apress Media, 2015.

Bonus

