
Charliecloud’s Successful Prototype Integration with Slurm

Building and Testing Charliecloud

Two problems users might run into when testing:
(1) Charliecloud storage directory was corrupted when

canceling the test via <CTRL+C>
○ Bug report is live and in the meantime can be

fixed via clearing directory.
(2) SELinux needs to be disabled for Charliecloud to work

What Does This All Mean?
Our team successfully prototyped an approach for
automatically containerizing Slurm jobs using Charliecloud.

Developers will not need to modify to Charliecloud to
implement this approach.

Users will be able to use this approach to more easily run Slurm
jobs as Charliecloud containers.

Potential Limitations:

(1) It requires users to upgrade to Slurm 23.02, which does
not currently enjoy wide adoption.

(2) It requires hard-coding ch-run options in the
configuration file, which reduces flexibility.

Future Work
With more time our team could…
(1) fix mandelbug issue in $PATH
(2) test compatibility of Slurm v22.05 with oci.conf

Next steps for the project include…
(1) update documentation for Charliecloud on SchedMD
(2) parallel programming with Message Passing Interface (MPI)

``

Open Containers
The Open Container Initiative (OCI) provides two standards
that are relevant to Slurm’s --container flag:

I. OCI Bundles - The specification contains two components:

(1) the root filesystem of the container
(2) a JSON file containing metadata about the container

II. Container Operations - the OCI defines five container
operations, and a sixth (run) is commonly used. The
oci.conf file maps these abstract operations to concrete
commands in a specific container runtime. The mapping
for Charliecloud’s runtime (ch-run) is depicted below:

Query State

Create

Start

Kill

Delete

Run

kill

ch-run

Users with complex software dependencies make containers an
essential tool for the future of HPC. Charliecloud differs from
other runtimes by being fully unprivileged; it can safely run on
sensitive machines without risk. Integrating Charliecloud with
Slurm’s container functionality would allow users on HPC
clusters to provide their jobs with a customized software stack.

Motivation

Testing Containerization
I. Manually - using bash to script sbatch jobs in Slurm

Results:
(1) containerized correctly within the slurm job
(2) container commands are run the same as in CLI

II. With --container flag - using Slurm’s container support

Results:
(1) runc commands are tricky; tmp cannot be found
(2) $PATH has mandelbug behavior

Charliecloud is lightweight; the dependencies are minimal.
There is one notoriously tricky one: libsquashfuse.

Containerization Test Program

.Charliecloud is written in Python and runs on the Linux
operating system. We had the choice of either Python or Shell
code to test our containers. We wrote a shell script that tests
for containerization across runtimes via environment variables.
That script is below:

Ways to
Identify

Containers

/proc/self/ns
or lsns

shows namespace
IDs or lists all

current namespaces

/etc/os-release
verify container file

differs from host
system

Environment
Variables

each runtime has an
env. var. that is set

inside the container

Many features involving oci.conf require Slurm 23.02, which
convinced us to upgrade our Slurm version. After upgrading, we
encountered an error pertaining to slurmstepd:

dmesg revealed slurmstepd was segfaulting upon invocation:

We analyzed the coredump to track the problem to a specific line
in the Slurm codebase. We shared this bug with Nate Rini, the
developer of the container feature, who patched the code:

Collaboration with SchedMD

error: _forkexec_slurmstepd: slurmstepd failed to
send return code got 0: No error

slurmstepd[8395]: segfault at 4347b1 ip
000000000040d72e sp 00007ffd67f28660 error 7 in
slurmstepd[400000+3f000]

Charliecloud storage directory was corrupted
when canceling the test via CTRL+C

Charliecloud has a full suite for testing its own functionality
which runs in three phases: Build, Run, Examples.

(1) Charliecloud differs from other runtimes by being
lightweight and fully unprivileged.

(2) Integrating Charliecloud with Slurm’s container feature
allows users to provide their jobs with a customized
software stack.

if ["$runc_container" = "true"]
then
 echo "is a runc container"
elif [-n "$CH_RUNNING"]
then
 echo "is a Charliecloud container"
else
 echo “container not found”
exit 1

fi

#SBATCH --nodes=1
#SBATCH --time=0:15:00
#SBATCH --no-requeue
#SBATCH --job-name=containertest
ch-run contdir/ -- ./execute

$srun --container /contdir/ -- echo containerized
containerized

$ salloc --container /contdir/ -- /usr/bin/env
USER=root
PATH=/bin:/sbin:/usr/local/

Charliecloud Containers Work with the Slurm Workload Manager

Not needed with
Charliecloud runtime

Layton McCafferty
Montana State University - Bozeman
layton.mccafferty@gmail.com

Nicholas Volpe
New Jersey Institute of Technology
ncv8@njit.edu

Hank Wikle
University of New Mexico
hwikle@unm.edu

Mentors:
Reid Priedhorsky
Lucas Caudill

libsquashfuse

i want u
too bad

Sunflower images
taken from FreePik
and Flaticon

A Promising Approach with Some Strings Attached

LA-U
R-23-28983

