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Preface

The Los Alamos National Laboratory Space Weather Summer School, with support from
the Institute of Geophysics and Planetary Physics, the Center for Information Science
and Technology, the Laboratory Directed Research and Development office, and the
Principle Associate Directorate for Science, Technology, and Engineering, held its
inaugural session in the summer of 2011. The summer school returned for a second
session, hosting a new class of seven students from various U.S. research institutions
from June 4tk — July 27th, 2012. The summer school format includes a series of structured
didactic lectures as well as mentored research and practicum opportunities. Lecture
topics include a range of general and specialized topics in the field of space weather given
by a number of active researchers affiliated with LANL.

In addition to structured lectures, students had the opportunity to engage in
research projects at the lab through a mentored practicum experience. Each student is
paired with a LANL-affiliated mentor to execute a collaborative research project,
typically strongly linked with a larger on-going research effort at LANL. This model
provides valuable experience and expertise to the student while developing the
opportunity for future collaboration.

This report includes a summary of the research efforts fostered and facilitated by the
Space Weather Summer School. These reports should be viewed as work-in-progress as
the short session again typically only offers sufficient time for preliminary results. At the
close of each summer school session, students present a summary of their research
efforts, and a panel honors the best presenter with an all-expenses-paid trip to the Fall
Meeting of the American Geophysics Union held in San Francisco. This year’s winner is
Erik Hogan on "Modeling the Expansion of a Contactor Plasma." Congratulations!

This program continues to enjoy success through career development opportunities
for students and opportunities for collaboration between students and mentors. Through
continued support from a number of laboratory organizations, foremost IGPP, the
summer school will continue to be hosted at LANL, and plans are already underway for
commencement of a 2013 session to be held this summer.

Los Alamos, NM Dr. Josef Koller
January 2013 Summer School Director
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Estimating magnetic field power spectrum using CRRES magnetometer data

Ashar Ali
Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder
Reiner Friedel
Space Science and Applications Group, Los Alamos National Laboratory

Scot Elkington

Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder

Abstract

We use the magnetic field measurements from the Combined Release and Radiation Effects Satellite (CRRES) to
estimate the Pc5 magnetic field power. These power spectra are computed as a function of radial distance L, intensity
of the magnetic activity Kp, and magnetic local time. Evidence such as results of hypothesis testing are presented to
quantify the relationships between these parameters.

Keywords: radial diffusion, magnetic field PSD, Pc5 waves, CRRES

1. Introduction

It is well known that radial diffusion is one of the mechanisms responsible for populating and depleting the van
Allen radiation belts with high energy charged particles. Since its initial formulation (Félthammar, 1965) radial diffu-
sion has been considered important to the study of acceleration mechanisms of charged particles in the geomagnetic
environment. The initial formulation has been extended to include for example, drift-resonance interactions between
electrons and ULF toroidal (Elkington et al., 1999) and poloidal (Elkington et al., 2003) waves.

Initial estimates of the diffusion coefficients assumed a fixed value of Dy = DEL + D’L‘”L due to both the electric
and magnetic fluctuations. Brautigam and Albert (2000) have shown that in order to model storm time behavior of
relativistic electrons it is necessary for the diffusion coefficients to be dependent on Kp. Using CRRES electric field
measurement data Brautigam et al. (2005) determined the electric field power spectral densities as a function of L and
Kp covering frequencies between 0.2mHz and 15.9mHz. They assume a purely electrostatic field and compute the
Kp dependent electrostatic component of the radial diffusion coefficient DEL. They then conclude that high activity
(Kp=06) causes the average value of the coefficients to be one to two orders of magnitudes higher than for low activity
(Kp=1). Following the work of Brautigam et al. (2005) we will estimate the magnetic field power spectral density
which can then be used to compute the electromagnetic component of the radial diffusion coefficient DQ’IL. We will
then study its dependence on L, Kp, and MLT.

2. Data Collection and Preparation

CRRES mission was launched on July 25, 1990 into a geosynchronous transfer orbit with an inclination of 18°,
perigee of 350 km, and apogee of 3600 km. With an orbit of around 9.5 hours, the apogee precessed from near 0600

Email addresses: ashar.ali@lasp.colorado.edu (Ashar Ali), rfriedel@lanl.gov (Reiner Friedel),
scot.elkington@lasp.colorado.edu (Scot Elkington)
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MLT through local midnight to around 1330 MLT at a rate of 2.5 minutes per day. CRRES orbit was set up to cover
all local times in about 19 months but due to an on board battery failure the mission ended in less than 15 months.
This introduces a bias against data from high L-shells on the dayside.

The stabilized spin period was 30 seconds (2 rpm) with the spacecraft spin axis aligned about 9° away from the
earth-sun line. There were sophisticated instruments on board to measure both the electric and magnetic field. The
fluxgate magnetometer (Singer et al., 1992) was located at the end of a boom and measured the full magnetic field
vector every 2.05 seconds. The data provided was spin-fitted and converted from local spacecraft coordinates into a
modified GSE coordinate system where the x-axis points along the CRRES spin axis, almost parallel to the x-axis in
GSE.

The 30 seconds resolution magnetic field data used for this study starts at orbit 190 on October 11, 1990 and ends
on orbit 1062 on October 10, 1991 with orbits 360 to 409 removed. The data was visually inspected for any unusual
spikes or missing data. For small gaps the data was interpolated. Few other orbits, with large data gaps or incomplete
data were eliminated from this study. In additioon, orbits with low Bz while the apogee was near the noon sector were
also eliminated in case there were any magnetopause crossings. After all the clean up, we had considerably more
usable data available to us from the CRRES magnetometer than Brautigam et al. (2005) had from the electric field
Instruments.

3. Fourier Analysis and Binning

Since we cannot compute the diffusion coefficient as a continuous function of L, Kp, and MLT, it is necessary
to discretize the parameter space and create bins. The bins were created in a manner similar to what Brautigam et
al. (2005) used. The bins in L are centered at L = 3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0. So for example, the bin
L = 5.0 contains data from L = 4.75 to L = 5.25. Since we will have poor statistics for L < 3 and L > 9 as well as
off-equatorial effects, we bin the data with L < 3 into the L = 3 bin and bin L > 7 data into the L = 7 bin. This then
causes statistical confounding so the two extremes bins L = 3 and L = 7 are later discarded. Along the Kp axis, we
bin using

Q = Quiet = {0, 0+, 1-, 1, 1+}

L = Low Activity = {2-, 2, 2+, 3-, 3, 3+}

M = Moderate Activity = {4-, 4, 4+, 5-, 5, 5+}
H = High Activity = {6-, 6, 6+, 7-, 7, 7+}

E = Extreme Activity = {8-, 8, 8+, 9-, 9}

and along the MLT axis, we use MLT = 0, 6, 12, and 18 hours as the bin centers. These additional bins in local time
were created because we wish to investigate how the power in the magnetic field changes with respect to local time.
Because of this binning in MLT, it was necessary to coarsen the Kp grid. Otherwise we would have very poor statistics
in all of the bins. Kp = E bin is also discarded because of the small sample size. Using ephemeris information it was
determined that CRRES spends about 20 minutes in each L-bin so we work with running data segments 20 minutes
long.

The data is first detrended using a cubic smoothing spline. The cubic smoothing spline depends on a smoothing
parameter p which can take any value between zero and one. For p = 0 the smoothing spline gives us the ordinary
least squares fitted straight line. For p = 1 we get the cubic spline with natural boundary conditions which goes
through all of the data points. As p varies from zero to one continuously, the smoothing spline becomes a better
and better approximation of the data. Setting the smoothing parameter at p = 0.00125 the smoothing spline acted
essentially as a low pass filter which is then subtracted to remove power from the zero channel.

Then for each 20 minute segment, the power spectral density is estimated using the multi-tapered method using
seven discrete prolate spheroidal sequences as data tapers. The PSDs are then binned according the L, Kp, and MLT

Los Alamos Space Weather Summer School 2012 2



Col or Log Plot of the Bin Sizes for Kp = Q
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Figure 1: A color log plot summarizing the number of data segments in all of the L and MLT bins if Kp = Q is fixed. The L-bins start at L = 3.5
and increase radially outward until L = 6.5. Notice the severity of the positive bias at high L-shells around midnight as well as the negative bias
around noon.

value at the center of the data segment. After all of the data is binned, we looked at the size of the bins to see how
many data segments are in each bin. Almost all of the bins contains thousands of segments while while a few are on
the order of hundreds or even tens. L = 3.5, Kp = H, MLT = 6 is the only bin which is completely empty. Figure 1
shows a color plot comparing some of the bin sizes.
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Figure 2: This particular bin contains 2151 data segments all of which are plotted on a log scale along with their arithmetic mean, geometric mean,
and median. Since the median is a more robust measure of central tendency, especially in the presence of outliers, median is the most appropriate
statistic here as a representative of the data in a bin. The median is plotted here along with 25% — 75% inter-quartile range to give an idea of the
spread of the data.
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Figure 5: Total power in various bins for L = 4.

4. Statistics

After all of the data has been binned, it became necessary to pick a representative data segment from each bin. As
figure 2 shows, the median is a robust measure of central tendency when compared with the arithmetic mean or even
the geometric mean, especially in the presence of outliers. The mean is very sensitive to outliers and since in our bins
outliers may exist a few orders of magnitudes away, the mean is a particularly bad choice for us. Therefore, we pick
the median PSD from each bin as a representative of that bin. Figure 3 compares the median PSDs for various L with
a high Kp activity at midnight.

In order to determine if the difference in power at various local times is statistically significant, we performed
hypothesis testing by applying the (right-tailed) rank sum test comparing bins pairwise in local time. For this com-
parison, the grid in L and Kp was coarsened to low activity, high activity, inner magnetosphere, and outer mag-
netosphere. The rank sum test tests the null hypothesis Median(X) = Median(Y) against the alternate hypothesis
Median(X) > Median(Y). We use the significance level of @ = 0.05. The results of all the comparisons are presented
in tables 1, 2, 3, and 4.

Los Alamos Space Weather Summer School 2012 6



5. Discussion

We see from figure 1 that we have fewer statistics around noon time than compared with other local times. Figure
2 shows that PSDs from a single bin can vary up to 2-3 orders of magnitude. The power is nearly flat from 0.81 mHz
to 4.1 mHz at which there is a very weak maximum peak at which is observed in almost all of the bins. Figure 3 also
shows that the power seems to be independent of L. As frequency changes, the ranking of powers at different L also
changes as the curves cross each other.

Figures 3 and 3 verify the fact that high Kp activity results in higher power than power at quieter times (Takahashi
and Anderson, 1992) but we also see that towards midnight, higher power occurs close to L = 5,5.5. They also show
that at L = 4 power is at maximum on the dusk side. The results of the statistical comparison let us decide if such
differences are significant or not. They provide us with a quantification as well as a concise summary of all of the
comparisons. From tables 1 and 2, we see that during quiet times the only thing we can say for sure is that noon has
higher power than at other times. For the outer magnetosphere we also have additional weak evidence that there is
more power at dusk than dawn. From tables 3 and 4 we see that during high activity the dominance of power at noon
is not so clear anymore. At low L-shell values noon and midnight both have higher powers than at dawn-side. At
higher L-shells all three sectors have more power than dawn-side. For all other comparisons we don’t have enough
statistical evidence to conclude anything.

We are primarily concerned with Pc5 waves and (Takahashi and Ukhorskiy, 2007) has shown that they have a
strong dependence on solar wind. Hence solar wind velocity is another parameter which should be explored but
during the lifetime of the CRRES mission, the only data available is from IMP 8 which has a resolution too low to be
of any use to us. As demonstrated (partially due to incomplete observations) there are quite a few uncertainties which
impede us. The interquartile range is intended to give an example of how varied the power (and hence the diffusion
coefficients themselves) can be. But despite the fact that we have only single point measurements we have established
some facts with strong evidence for them. Clearly, more investigation is needed to explore this parameter space and
comprehend the individual acceleration mechanisms as well as their interactions with each other.

6. Acknowledgment

We would like to acknowledge the Virtual Magnetospheric Observatory, Institute of Geophysics and Planetary
Physics, University of California, Los Angeles for providing access to the data used in this study. In addition, we
would like to thank our colleagues at Space Science and Applications Group, part of Los Alamos National Laboratory
for providing us with invaluable assistance along with stimulating discussions in the course of this study. Partial
funding was provided by the Los Alamos Space Weather Summer School 2012.

References

Brautigam and Albert (2000), “Radial diffusion analysis of outer radiation belt electrons during October 9, 1990 magnetic storm”, J. Geophys.
Res., 105, 291-309.

Brautigam et al. (2005), “CRRES electric field power spectra and radial diffusion coefficients”, J. Geophys. Res., 110, A02214.

Elkington, Hudson, and Chan (1999), “Acceleration of relativistic electrons via drif-resonance interaction with toroidal-mode PC-5 ULF oscilla-
tion”, Geophys. Res. Lett., 26, 3273-3276.

Elkington, Hudson, and Chan (2003), “Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field”, J. Geophys.
Res., 108(A3), 1116.

Falthammar (1965), “Effects of time-dependent electric fields on geomagnetically trapped radiation”, J. Geophys. Res., 70, 2503-2516.

Singer, Sullivan, Anderson, Mozer, Harvey, and Wygant (1992), “Fluxgate magnetometer instrument on CRRES”, J. Spacecr. Rockets, 29, 599-601.

Takahashi and Anderson (1992), “Distribution of ULF enerfy (f is less than 80 mHz) in the inner magnetosphere: A statistical analysis of AMPTE
CCE magnetic field data”, J. Geophys. Res., 97, 10751-10773.

Takahashi and Ukhorskiy (2007), “Solar wind control of Pc5 pulsation power at geosynchronous orbit”, J. Geophys. Res., 112, A11205.

Los Alamos Space Weather Summer School 2012 7



MLT -Y

0 6 12 18

0.4947 | 0.9988 | 0.3590

MLT - X 0.5160 0.9993 | 0.3792

12 | 0.0013 | 0.008 0.0015

18 | 0.6510 | 0.6310 | 0.9987 -

Table 1: Low Kp activity in the inner magnetosphere

MLT -Y

0 6 12 18

0.2225 | 0.9812 | 0.8156

MLT - X 0.7855 0.9987 | 0.9619

12 | 0.0201 | 0.0015 0.0230

18 | 0.1917 | 0.0405 | 0.9785 -

Table 2: Low Kp activity in the outer magnetosphere

MLT - Y

0 6 12 18

0.0028 | 0.3894 | 0.1157

MLT - X 0.9974 0.9923 | 0.9214

12 | 0.6208 | 0.0084 0.2068

18 | 0.8895 | 0.0827 | 0.8008 -

Table 3: High Kp activity in the inner magnetosphere

MLT - Y

0 6 12 18

0.0019 | 0.7266 | 0.8733

0.9982 0.9987 | 0.9998

MLT - X

0

6 -

12 | 0.2824 | 0.0015 - 0.7527
18 | 0.1324 | 0.0002 | 0.2558 -

Table 4: High Kp activity in the outer magnetosphere
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Modeling the Expansion of a Contactor Plasma

Erik A. Hogan

University of Colorado at Boulder, Boulder, CO 80309

Gian Luca Delzanno

Los Alamos National Laboratory, Los Alamos, NM

Abstract

Plasma contactor technology is widely used on board spacecraft to keep spacecraft charging levels under control.
On the International Space Station, for instance, it is used to prevent high current discharges between differently
charged surfaces. It consists of emitting a neutral plasma to create a plasma reservoir near the spacecraft in order to
balance the currents collected by the spacecraft from the magnetospheric environment. One approach to modeling
the contactor plasma plume applies a self-similar solution in order to gain insight into the plume dynamics without
requiring expensive numerical simulations. Typically, hydrodynamic fluid equations are used to model the plasma
behavior. In this paper, a comparison of two self-similar plume expansion models is presented. Approximate analytic
models are obtained for plasma plume expansion into vacuum.

Keywords: plasma plume modeling, self-similar expansion, contactor plasma

1. Introduction

In earth orbit, spacecraft experience several types of natural charging. One type of charging that occurs can
be attributed to the presence of a plasma environment around the spacecraft. The interaction between the charged
particles in the plasma and conducting surfaces on a spacecraft can result in charging on the order of 10’s of kiloVolts.
The use of plasma contactor technology is important for spacecraft applications where dangerous charging is an issue.
A neutral plasma, often Xenon, is emitted from a spacecraft into the surrounding environment to create a plasma
reservoir which is used to balance out the charging from the natural environment. On the international space station
(ISS), for instance, a large charge differential may develop between the tips of the solar panels and the hull (Gabdullin
et al., 2008). Left unchecked, the charge differential results in a discharge current between the different parts of the
ISS. This may be damaging to onboard electronics or dangerous to astronauts on a spacewalk.

In order to study applications of a contactor plasma, a method is needed to model the expansion of the emitted
plasma plume into the surrounding environment. One way to accomplish this is through the use of particle-in-cell
(PIC) simulations, which provide an accurate first principle description of plasma behavior at the expense of compu-
tation time. For a large contactor plasma plume (~1 km), the use of PIC simulations presents serious challenges. For
a PIC simulation to be stable and accurate, the simulation domain needs to resolve both the smallest time and length
scales of the problem. Typical contactor plumes have a plasma temperature in the 1-5 eV range and an ion injection
velocity of a few km/s. With a typical emission of 10'® particles per second, the Debye length of the plasma may be
on the order of millimeters. For a plasma plume with an overall size on the order of a kilometer, there is a difference
in scale of six orders of magnitude. The computational burden for such a scenario is immense, and impossible with
typical PIC codes even on today’s supercomputers.

To circumvent this problem, analytic solutions for plume expansion are desired. In this paper, two analytic plume
models are considered (Korsun, 1995; Merino et al., 2011). Both of them apply the method of self-similarity to plasma

Email addresses: erik.hogan@colorado.edu (Erik A. Hogan), delzanno@lanl.gov (Gian Luca Delzanno)
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fluid equations to arrive at an analytic solution for a plasma plume expanding into a vacuum. While the respective
plume models are similar in their solution procedure, slightly different fluid equations are used to model the plasma
behavior.

The paper is structured as follows. First, an overview of the fluid equations used to describe the plasma behavior
is presented. Next, the self-similar solution procedure in Korsun (1995) is reproduced, resulting in an approximate,
analytic plume model. Lastly, the developments in Merino et al. (2011) are reproduced. Three solution treatments are
considered, and the corresponding analytic plume models are presented.

2. Background

In this paper, two different plume models are considered. Both models start from the two-fluid equations for
a plasma of electrons and ions. The models include a continuity equation for the plasma (quasi-neutrality holds),
momentum equations and an equation of state for pressure. The equations are written in cylindrical geometry with
azimuthal symmetry and a steady-state solution is sought.

2.1. Fluid Equations in Korsun (1995)

The first plume model under consideration is developed in Korsun (1995). Here, a detailed replication of the
self-similar plume model is presented. The solution is obtained after consideration of the fluid equations at steady
state:

onu N l(’)(rnv) ~0

o T 7 ar (12)
ou ou onT
i (ua " VE) - 2T (1b)
mn u@ + v@ = _Bn_T (1c)
Ox or]~  or
n oT oT ou 10rv .
y_l(ua+v5)+nT(a ;E)—Vq, (1d)

where m is the ion mass, V = (u, v) is the velocity field, n is the plasma density, 7 is the plasma temperature, vy is the
adiabatic index, and ¢ is the heat flux. These fluid equations are expressed in cylindrical coordinates. Here, x is along
the axis of the jet and r is the radial direction, normal to the jet axis. The velocity in the x direction is denoted as u,
and v is the velocity in the r direction. Axial symmetry of the jet is assumed for this problem.

2.2. Fluid Equations in Merino et al. (2011)

The second plume model considered is developed in Merino et al. (2011). The fluid equations used to obtain a self-
similar solution are somewhat different than before. Rather than including an equation for temperature, a polytropic
equation of state is used. In this case, the set of fluid equations is

0 10
nu L1 (rnv)

ox | r or 0 (22)
Ou Ou e dp
ua+\15+;i§—0 (Zb)
ov o e d¢p
Ma VE EE =0 (20)
L9t - evo =0, (2d)
n

where ¢ is the electric potential of the plume and e is the elementary charge. The subscripts e and i refer to electrons
and ions, respectively. Equations (2b) and (2c) are the ion momentum equations, while Eq. (2d) stems from the
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electron momentum equation after neglecting electron inertia.! The above set of equations, taken alone, will not yield
a solution as there are more unknowns than equations. In order to remedy this issue, the polytropic relation
n’
nTe=To—~ 3)
Lo
is introduced. In this model, the electron temperature is assumed to be constant throughout the plume (7T, = T,).
Combined with the fluid equations above, this relation allows for a self-similar solution for the plume expansion.

3. Self-Similar Solution in Korsun (1995)

Here, we proceed through the solution procedure outlined in Korsun (1995). The streamlines of the plume are
assumed to expand according to
r(x) = roa(x), “

where a(x) is a function whose form will be obtained from the self-similar solution procedure. Furthermore, the scaled

coordinate -

" a)

n &)

is introduced.
It is assumed that the plume solution will separate as functions of x and 5. To obtain a self-similar solution, the
self-similar form

u = uc(x)y(n) (6a)

v =unda (6b)

T =T.()t(n) (6¢)
NA

nu = — f(n) (6d)
wa

is used. The constants N and A are plume characteristics formally defined as

N = f nurrdr
0

A= fo f2ndn.

Note that 7(0) = y(0) = f(0) = 1. For compactness of notation, ()’ is used to denote a derivative with respect to the

independent variable. For example, ], = %.
X

3.1. Continuity Equation

Korsun (1995) claims that with this self-similar solution form, Eq. (1a) reduces to an identity. The proof follows.
First, we compute the following derivatives. Let nu = 8(a) f(n), where 8 = % Then

onu , Vo
o = —Zféa —ﬁﬂa f (®
x a a
and
nv = nua'n (9a)
1
Lorm B v pla s (9b)
r or a a

Combining Egs. (8) and (9b) in the continuity equation clearly reduces to identity.

'From Eq. (2d) we have V(':—fe) = V¢, which implies that Egs. (2b) and (2c) are in fact formally equivalent to Eqs. (1b) and (1c).
3
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3.2. Momentum Equation for v (radial component)
We will begin with an analysis of Eq. (1c). Note the following identities
av ’_ 7 T]2 ’ 7 ,] ’ 2
oy = nduc—ue—(a )Y = uey= (@) + ucyna (10a)
x a a
v _ om0y,

— =u.—ad'y +u.~a (10b)
or a a
T 1 1 T,
6L =Tan|—f - —y'|+ n(—“r’). (10¢)
or fa ya a

The above identities are used in Eq. (1c) to yield (after some reduction)

T (Y o
mucy*n (a'u), + u.a”) = —=< (y_ S _)_
a

The goal here is a separation of variables, where all terms dependent on x are on one side of the equation and those
depending on 7 are on the other. With some minor rearranging this is achieved, resulting in

mau,
T,

@i +uay= (L L _T)o¢, 11
yn\y f 7

where C| is the constant of variable separation. There is one further simplification that may be made, noting that
(@i +u.d”") = (u.d') .

We have thus obtained the same relation as Reference 3, namely

mau,
T,

(u.a') =Cy. (12)

The right-hand side of Eq. (11) will be left for use later on.

3.3. Momentum Equation for u (axial component)

Here, Eq. (1b) is considered. As before, the following useful identities are defined

0

o -ulay (13a)
Ox a

ou u,

ey 13b
or ay (13b)
onT T. T. (1, 1, 1,
) T [ Gty B LI N (13¢)
ox U a y f T

Insertion of the above into Eq. (1b) and performing some minor simplifications yields

T. |, 1 ’ T. |, my2 , T 1 , 1 , 1 , 1 ,
—2a3; a + _a2u T, - —az;z u,. + _az‘r u, + a;u Za ;y - ?f — ;T =0.
c c o .

This equation can be simplified further by noting that

T. |, 1 T T. , o ( T,
5, 4T e T e = o)
a‘u, a‘u, a’u? ox \u.a

With this simplification, the momentum equation for u is

d (T, 2 T, 1 1 1
( )+my u. + na’(—y’——f’——‘r’)zo. (14)

dx\u.a?) d?v ¢ dPu. \y f T

-2

4
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Lastly, using Eq. (11) yields

d TL' 2 Tc 2.2
< + 2w+ a2 =0. (15)
dx\u.a?) a*t adu, T

This equation is not separable. However, by imposing an additional constraint on the system, a separable form may
be obtained. First, let

T
7 =1+ym), (16)
which is convenient because 7(0)/y(0) = 1. Inserting this into the above equation results in
mit, T. \ T. \ aT.
Crl—=| == + —(=C11%), 17
o P e e EA e (a7
which can be separated if
mu’. T, \
c+l—=] =0. 18
a? (ucaz) (18)

By imposing this constraint on the solution, it follows that

e _ 1
TANESS o
where C; is a constant of separation. After a few steps of simplification and manipulation, the two relationships
ylz =1+ g—;rf (20)
and
T, u. {a 2-C2
o =i la) ey

are obtained. Note that the subscript O refers to the values of the corresponding quantities at the origin, e.g. T, =
T.(0). Now, we return to the right hand side of Eq. (11), rewriting it as

T((’)lny dln f 6ln‘r)
_ _ =C

¥\ an on on

Substituting in the relationship for 7/y? and separating the variables,

d(ln( J )) __an 4, 22)

ik 1+(Cj—;172

Integrating and employing Eq. (20) once more yields the relation

C] —1-C,/2
ﬁ=@+6f) 23)
2

3.4. Temperature Equation

Lastly, Eq. (1d) is considered. Plugging in the self similar solution and simplifying results in

%TC fT% [1n (Tcl/(y_l)ucaz)] =V.q. (24)

5
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This equation may be reduced further if the assumption Vg = 0 is made. For this condition, the above simplifies as
7Y Vy.a? = const. (25)
Combining this with Eq. (18) results in the condition

2
e . LTC = const. (26)
2 y—-1

3.5. Plume Solution

For the three x-dependent variables u,, T,, and a four equations result from the self-similar solution procedure:

mau,

(ued') = C (27a)
TQ/W‘”uCcﬂ - T(;/(y—l)ucoag (27b)
T, To
=l ucoaé"Q (27¢)
u? y “20 Y
m D y— 1 m ) y— 1 0 ( )

This situation is problematic because the problem is over-determined. The only solution which satisfies all four of
these equation simultaneously is the case of constant T, u., and a. To circumvent this problem, Reference 3 chooses
to set u> = ué [1 +2My 2(y - 1)‘1] = const and neglect satisfaction of Eq. (27d). Correspondingly, it is easily shown
that C, = 2y in order to satisfy Eqs (27b) and (27c). Lastly, the separation constant C; is simply chosen as equal to
C,. With these assumptions, the flow parameters are found to evolve along the flow axis as

Tca2('}/—1) - TCOa(Z)(y_l) (283)
2(y-1)

mauta” = 2yTe (a_o) , (28b)

a

the latter of which may be solved to yield the function a(x).
For the n7-dependent terms, we are left with the two equations
,‘y,]

fy=(1+7) (29a)
LI - (29b)

¥y

Here, as in Reference 3, the case of 7 = 1 is chosen, which corresponds to uniform temperature in the flow cross
section, i.e. dT/dr = 0, is considered. For this condition, note that y = (1 +7?)""/2 and f = (1 +1?)7". Inserting these
into the self-similar solution yields

N(y - 1/2) 1
n=

30
na*u, (1 +r2/a?)” (302)
1
v=uld (30¢)
a
2(y-1)
T=To(2) (30d)
Thus, the plume model solution has been obtained.
6
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It is important to point out that this plume solution does not satisfy the fluid equations (1a)-(1d). The reason for
this lies in the fact that, to obtain a solution, an assumption is made that . is constant. Furthermore, the condition in
Eq. (27d), required for satisfaction of the u-momentum equation, is ignored. Effectively, this means that Eq. (1b) is
not satisfied by the plume solution. An estimate of the error can be obtained by evaluating the momentum equation.
While the error will not be zero, it may be small enough that the solution is still a valid approximation of the plasma
expansion.

4. Self-Similar Solution in Merino et al. (2011)

Next, we consider the self-similar plume expansion solution derived in Merino et al. (2011). Here, the fluid
equations are normalized using T, m;, e, ny and a characteristic length Ry. To arrive at the normalized form, note that
n = n/ng, (2) = ed/Te, it = ul/ VTeo/m;, and ¥ = v/ \T,o/m;. Dimensionless variables are denoted with a hat, e.g.
@ = e¢/T,o. The self-similar solution is assumed to have the form

it = uc(%)uy () (3la)
P = ima’ (%) (31b)
= n(Xn,(n), (3lo)

where 7 = #/a. While appearing in the fluid equations, the electric potential, ¢, is not explicitly needed to arrive at a
solution; it can be obtained by postprocessing the electron momentum equation. The self-similar quantities have the
boundary conditions u.(0) = +fyMy, u,(0) = 1, a(0) = 1, n.(0) = 1, and n,(0) = 1. Note that My is the flow mach
number at the point of plume emission (x=0).

4.1. Continuity Equation
Inserting the self-similar solution into the continuity equation yields

2n.uca’ + a(uen. + neu) = 0, (32)
which, after a few steps, reduces to
(@®neu) = 0. (33)
Integrating this expression yields
aneu. = const = \yM. (34)

4.2. Momentum Equation for v (radial component)

Once again, the momentum equation for the radial velocity component is considered first. Normalizing the fluid
equations and plugging in the self-similar solution yields

y(ncn,)yn;

nen?

+ naucu’(@'u. + u.a’) = 0. (35)

Making note of the minor simplification (u.a’)’ = a’u.. + u.a”, the preceding equation may be separated as

y=2_4
n n
L8 ety = -~y (36)
nZ nu;

where C is a constant of separation.
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4.3. Momentum Equation for u
Next, the momentum equation for u is considered. Again, normalizing and plugging in the self-similar solution
yields (after some simplification)
- ’ al ’ ’
y(nen;)” z(n,nc - Enncnt) + ucutzuc =0, 37
which is unfortunately not separable. However, if an appropriate assumption is made, then the derivative of Eq. (37)
with respect to 77 is separable. Similar to the developments in Korsun (1995), the solution is assumed to satisfy

7nz_2n£. +ucul. = 0. (38)

This condition is equivalent to satisfying the momentum equation for u along the center line (# = 0), and can be
integrated to yield

Lo ¥ 5 1 o Y
Eu(,+y_1nz = const = 57M0+y—1' (39)
Imposing this constraint on the solution and taking the n derivative of Eq. (37), the result ultimately separates as
n. a 2n;
X = 40
nea’ 2nu; fuy — (y — Dn; (40)
Integrating the left hand side of this equation yields
ne =aP. 41)
Likewise, integrating the n dependent terms results in
ny POTD = 2P (42)

4.4. Electric Potential

From the self-similar solution procedure, an analytic expression for the normalized density (i) is obtained. In
returning to the fluid equations used to generate a solution, a relationship between 7 and ¢, the potential, is found.
From the electron momentum equation (neglecting electron inertia),

1
-V(nT,) = eV, (43)
n

where T, is the electron temperature. After normalizing, this equation reduces to

\%

=>

= Vo, (44)

| =

the solution to which is the Boltzmann relation

i =ke?. (45)
where « is a constant of integration. Noting that potential is measured relative to some arbitrary reference, the constant

K is set to 1 without loss of generality, leading to 7 = ?.

4.5. Plume Solution
For the x-dependent terms u,, n. and a, four relationships exist:

aneu, = \VyMo (46a)

%(uca')' =C (46b)

l142. + L = l)/Mz + L (46¢)

27°¢  y—1° 2770 Ty

ne = aP. (46d)
8
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Again, the over-determined nature of the problem ultimately prevents a full solution from being obtained. Satisfying
all four of these conditions simultaneously requires a non-real solution. This problem will be addressed shortly.
For the n-dependent terms 7, and u,, two relationships result:

1) n P00 = 2P (47a)
,yn)’—zn/
2) - L =yC. (47b)
nu;

In order to arrive at a solution, an assumption for the u# velocity component is made. Three different models are
considered here; all assume a constant u, = /yMo. The difference between them lies in how u; is chosen. By simply
choosing a velocity profile for u, the momentum equation for u is ignored. This means the conditions in Egs. (46c),
(46d), and (47a) no longer apply to our solution. The error in the solution may be evaluated using this neglected
momentum equation.

First, let us consider the implications of a constant u,. Immediately, the two remaining conditions for the x

dependent terms become
1

n, = = (48)
and
a’ = al_h%. (49)
0
It is worth noting the similarities between these developments and those in Korsun (1995). Fundamentally, they are
the same, with the differences being attributed to the normalized quantities used here. Next, Eq. (47b) is integrated to
yield

nl=1-@-1C f nu2dn. (50)

Now, two different models are considered. The first is the Parks and Katz (PK) model (Parks and Katz, 1979)
. The PK model makes the simple assumption of u#, = 1. This merely implies that velocity is constant in a flow
cross-section. Plugging this into Eq. (50) yields

_ 1
nh=1- 5= HCr?. (51)

The second model is the Ashkenazy and Fruchtman (AF) model (Ashkenazy and Fruchtman, 2001). Here, a
conical velocity profile is assumed, with

u=(1+@yr) " (52)

As the plume diverges from the centerline, the velocity is assumed to drop off. Using this velocity profile in Eq. (50)
yields
C
2( a;)2
Once again, it is important to point out that the PK and AF plume models do not satisfy the momentum equation
for u, due to the assumptions made about the velocity profile used to gain a solution. The relative local error may be
evaluated using

nl=1--1) In(1+(a)') (53)

on |, on AN
e=\—+v—+y" "= /i, 54
( o e T as)! 6
which is essentially a normalized evaluation of the axial momentum equation. For the assumed constant u,, this

equation reduces to
1 (n. & n;)
€= —|—-n——|. 55
M2 (n L (55

Being inversely proportional to the flow mach number, this error will be relatively small for actual thruster plumes
where M, can be greater than 20.
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5. Plume Profiles

To illustrate the plume models, density profiles are plotted for the Korsun (1995) and Ashkenazy and Fruchtman
(2001) plume models. The Parks and Katz (1979) model is not plotted due to its similarity with the AF model. For
the sake of comparison, the density profile in Eq. (30a) is normalized in the same manner used to obtain the AF model
density. The adiabatic index is set to y = 5/3 for both plume models, and the flow mach number is assumed to be
M, = 20.

To compute the density profile for the AF model, the separation constant C must be defined. It is computed such
that 95% of the flow lies within the = 1 streamline, which corresponds to a value of C = 2.64. The initial slope of the
streamline expansion function is defined as a’(0) = 0.2. The resulting plume density profile is shown in Figure 1(a).
To compute the relative local error, Eq. (55) is used. The error in the AF plume model is shown in Figure 2(a). The
worst errors are seen near x = 0, in the region outside the plume. There are, however, zero-error streamlines where
the axial momentum equation is satisfied.

To compute the density profile for the Korsun model, a’(0) = 0 is used. The resulting plume density is shown in
Figure 1(b). To compute the relative local error, the axial momentum equation is normalized using the same procedure
as Merino et al. (2011). For the Korsun model, the error is computed as

ex = |i— + = (56)

on . on  10aT 122
v— i
0% oF n 0%

This error is plotted in Figure 2(b). Unlike the AF model, there are no zero-error streamlines in the KT model. Once
again, the largest errors occur in the region of x = 0.

6. Conclusion

In this paper, a self-similar solution procedure is used to gain an approximate, analytic solution for the expansion
of a plasma plume into a vacuum. A detailed reproduction of developments in literature is performed. The first paper
considered is Korsun (1995), where a plume solution is derived assuming a separable solution form. Ultimately, an
exactly valid analytic solution is unobtainable, with an approximate analytic solution resulting. The second paper
considered is that of Merino et al. (2011). Once again, efforts to obtain an analytic solution for the plume expansion
are thwarted due to the over-determined nature of the problem. Two different approaches are considered to circumvent
the issue and arrive at an approximate solution.

References

Ashkenazy, J., Fruchtman, A., 2001. Plasma plume far field analysis, in: 27th International Electric Propulsion Conference, Fairview Park, OH.

Gabdullin, EF., Korsun, A., Tverdokhlebova, E.M., 2008. The plasma plume emitted onboard the international space station under the effect of the
geomagnetic field. IEEE Transactions on Plasma Science 36, 2207.

Korsun, A., 1995. Transverse expansion of plasma plumes and plasmoids ijected from electric thrusters, in: 24th International Electric Propulsions
Conference, Moscow, Russia.

Merino, M., Ahedo, E., Bombardelli, C., Urrutxua, H., Pelaez, J., 2011. Hypersonic plasma plume expansion in space, in: 32nd International
Electric Propulsion Conference, Wiesbaden, Germany.

Parks, D., Katz, 1., 1979. A preliminary model of ion beam neutralization, in: 14th International Electric Propulsion Conference, Fairview Park,
OH.

10

Los Alamos Space Weather Summer School 2012 18



. 1
Eu: |
-2
T : -
-4
20 -
I al 100 1510 200 D

X

(a) Log(n)- AF Model

0 al 100 150
X
(b) Log(i)- Korsun Model
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Abstract

Monte Carlo simulation methods in GEANT4 are used to determine energy measurements and particle
identification for a two element detector. Detectors of various thickness and sizes include silicon and
YSO materials. Different types of energetic particle sources are incident onto the detectors and the
deposited energies are calculated. These simulations are performed under LANL's General Response
Simulation System(GRESS). GRESS uses a Monte Carlo simulation to determine the response of an
instrument to known photo or particle radiation fields. The system records energy deposits within a
given detector and it can apply any desired calibration effects for an instrument design. The GRESS
package has several external dependencies: it requires the GEANT4 Monte Carlo simulation toolkit
and the ROOT data analysis package, originating from the high energy particle physics simulation
toolkit as used by CERN. In addition, the Geometry Description Markup Language (GDML) is used to
define the simulation mass models. Our simulation results and post-processing data analysis presented
here, will be combined with existing calibrations from energetic particle data from beam labs to
determine energetic particle instrument responses for space weather data product delivery.

1. Introduction

Since Van Allen's discovery of the radiation belts and many of the subsequent discoveries, particle
detection has been fundamental to space science. To provide accurate information about particle
distributions, the particle detectors need to be thoroughly calibrated before they are lunched to the
space. There are basically two ways for calibrations: experimentally using existing high energy particle
beam facilities to radiate onto the particle detectors, from the known particle sources to calibrate the
instruments; Using powerful computer simulations to determine the instrument response and compare
to the experimental data. For our purpose, we use LANL's in house simulation padkeg&eneral
Regonse Simulation System (GRESS). GRESS is based upon GEANT4 code by CERN, developed specially for
space science applications and has been successfully implemented for particle instrument calibration. In this
project we use GRESS to calibrate a two element detector for space particle energy measurements and particle

identification.
Los Alamos Space Weather Summer School 2012 21



2. Methodology

GRESS uses Monte Carlo simulation to determine the response of an instrument to known photon or particle
radation fields. The system records energy deposits within the detector and applies calibration effects to the
data. It is designed to provide flexibility in the choice of source position and input energy distribution.

2.1 Simulation Tools

The general architecture of the GRESS code is shown in Figure 1 below. The system is based on a two-step
simulation process—one computation-intensive step to generate the ideal physical response of an instrument,
and another (faster) step to incorporate non-ideal instrument-specific effects into the response function.
Separating these steps allows changing instrumental parameters without regenerating the costly physical
response data. Data between these steps is captured in large files using the “root” package from CERN. The
standard end products of GRESS are files that contain a spectrum or a detector response matrix. In practical use,
a collection of DRMs is required to describe the full instrument response as a function of variables such as angle,
position, operating mode, etc. These collections could be used to form a DRM database, which is accessed by
auxiliary data analysis systems that require knowledge of the instrument response.

GRESS Data Analysis

\/ —
/ cnds. Ap| physim fri?:; calsim [

|
mint4 Spectrum

or DRM

W

atmosim

oo ||
< =
| | arpack

Spectrum
or ARM

|‘

Figure 1- Architecture of the GRESS code.
In our simulations we use program Physim(“physical simulator”). Physim is a program to model and simulate
the ideal physical response of arbitrary instruments. It uses the GEANT4 Monte Carlo radiation transport
modeling and simulation toolkit with GRESS-specific augmentation. Inputs consist of interactive or stored
commands along with could be used to form a DRM database, which is accessed by auxiliary data analysis
systems that require knowledge of the instrument response.

2.2 Simulation Setup
The particle detectors simulated is designed into two groups, low energy detectors(LD) and high energy
detectors(HD). LD consist of 2 pieces of silicon(Figure 2), each measured 80um and 3500um thick;
HD consist of one 300um thick silicon, one YSO crystal with radius of 2.3cm.

Los Alam 22

Figure 2. Schematics of low energy detector(left) and high energy detector(right).



LD is designed to measure the stopping power based on the following equation:

—dE/dx= (4Z2mec2/p2)+Cepe[In{2mec2p 2/(1(1-p 2))} P 2] Q)
where mec2is the electron rest energyis the speed of lighg, is vic, v is the particle speed,=aNoe4g/
m)/(me2c4) z, m, p are the average nuclear charge, nuclear mass and mass density, respectively of the

material, and (~13.%eV) is the average ionization potential of electrons in the material.

Dividing both sides of equation (1) Ipy and substituting the numerical values & 0.150¢/m) cm?2
andmec2= 0.511 Meygives for the energy loss by ionization expressegkinper g/cm2 units

—dE/(pdx)= —dE/d&=0.307Z2/p 2)(z/m)[In{2mec2p 2/(I(1-p 2))} P 2] 2
For non-relativistic particlespk< 1) the stopping power for protons=(z) reduces to
—dE/d&=0.153(mpc2/Be(z/m)*[11.93 —In@) —In(mpc2/E)] 3)

Figure 3 shows a plot of equation (3) for protons traversing Si (z =14) with a curve based on
experimental stopping power data.

N
o
w

M. J. Berger et al.

PROTONS

102F Equation (3)

ELECTRONS

M. J. Berger et al.

10"

Stopping Power (- dE/d&) (l\/IeV-ch/g)
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1073 107 10 10° 108

Energy (MeV/amu)

Figure 3 — Proton/Electron Stopping power in Silicon.

HD is a scintillation detector. An energetic particle passing throwgintllator material excites atoms
that then emit light as they decay to their ground states, the light is then converted to an electrical signal
that is amplified and recorded(Figure 4).
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The beam input is critical to simulate the instrument response. we can vary the input beam type,
energy, shape, size, pointing angle, beam angle to simulate different environments. For this project we
are focusing on energy response for proton and electron, so the input beam's shape, size, angles are key
constant while sweep the energy range and particle type as the simulations input. Here is one sample
beam input :

/gps/particle proton
/gps/pos/shape Circle
/gps/pos/radius 0.05 cm
/gps/ang/type beam2d
/gps/pos/srcdistance 5.0 cm
/gps/pos/srctheta 0. deg
gps/pos/srcphi 0. deg
/gps/ene/mono 100 MeV

3. Simulation Results

The energy range a detector can measure is limited by its energy deposition. There is no lower limit as
the particle energy will be deposited in the front silicon piece; for upper limit, once the energetic
particle “punch through” the back detector materials, the stopping power and scintillation method are
no longer valid. Based on the simulation data, energy range for input proton is 10Mev — 150Meyv,
energy range for input electron is 500Kev to 15Mev. Figure 5 — 8 show the simulations for
Proton/electron beam shot onto LD/HD detectors, blue lines are proton trajectory, green lines are
generated photons, red lines are electron traces.

Figure 5 - LD1/LD2 Proton Simulation, left: Proton Parallel 18Mev; right: proton parallel 32Mev.

Los Alamos SpacE%ﬁtﬁe’r%@r Iéla%@rbgiwjlation, left: Electron parallel 3 MeV; right: electron parallel 15 MeV. 24



Geant4 also kept records of the interaction statistics,

Figure 8

comesponding to different input particle energy.
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Figure 9 — 12 show the interaction statistics
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4. Conclusion and Future Work

From simulations the LD/HD detector energy response is calculated(Figure 13).
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The preliminary results presented here will be combined with other calibration data to generate the
better instrument response modeling. For future simulation works, there are two areas can be further
refined: the instrument geometry and material modeling can be build in more realistic setup; the input
particle beam parameters should be modified to reflect more realistic space environments, we can use
existing experimental data such as CREME96 to generate better results.
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Angles-Only Orbit Determination For Electro-Optical Sensors

Richard Linares
Graduate Sudent, University at Buffalo

Abstract

This paper studies the problem of determining a resident space object’s (RSOs) orbit from astrometric data. Solar
radiation and atmospheric drag disturbance forces are modeled and used in the estimator. Two scenarios are used to
simulate synthetic data for twofiierent RSOs orbits, a geosynchronous transfer orbit and a low earth orbit scenario.
Data samples are generated over a ten day period when the RSO is over the observation ground site, not in shadow,
and the sky is dark enough for optical measurements. An Unscented Kalman Filter is applied to this problem and
the orbit determination accuracy is shown using electro-optical measurements. The results are discussed and the two
scenarios are compared.

Keywords: Nonlinear Filtering, Orbit Determination, Ballistic Ciiieient Estimation

1. Introduction

In recent years space situational awareness, which is concerned with collecting and maintaining knowledge of all
objects orbiting the Earth, has gained much attention. The U.S. Air Force collects the necessary data for space object
catalog development and maintenance through a global network of radars and optical sensors. Due to the fact that
a limited number of sensors are available to track a large number of resident space objects (RSOs), the sparse data
collected must be exploited to the fullest extent. Various sensors, such as radars, exist for RSO state estimation, which
typically includes position, velocity, and a non-conservative force parani&tesnalogous to a ballistic cigient.

This work models both the ballistic cirient and the SRP albedo area-to-mass ratio while designing an estimator to
estimate the orbits of a Low Earth Orbit (LEO) and Geostationary Transfer Orbit (GTO) RSO.

Deep space optical surveys of near geosynchronous (GEO) objects have identified a class of high area-to-mass ratio
(HAMR) objects Schildknecht (2007). The exact characteristics of these objects are not well known and their motion
pose a collision hazard with GEO objects due to the SRP induced, large variations of inclination and eccentricity.
HAMR objects can also be influenced drag forces since the area-to-mass ratio is important in the magnitude of drag
disturbances. by These objects are typically non-resolved dhdudti to track due to dim magnitude and dynamic
mismodeling. Therefore, characterizing the large population of HAMR objects in geostationary orbit is required
to allow for a better understanding of their origins, and the current and future threats they pose to the active SO
population.

Estimating the dynamic characteristics of a HAMR object using light curve and astrometric data can allow for area-
to-mass parameters to be observable. It has been shown that the SRP albedo area-to-m%;% iatiservable
from angles data Kelecy and Jah (2011) through the dynamic mismodeling of SRP forces. Reference Kelecy and
Jah (2011) conducts a study with simulated and actual data to quantify the error in the estin%am good
performance is found using data spanning over a number of months. Also Ref. Linares et al. (2010, AIAA-2009-6293)
shows that orbital, attitude and shape parameters can be recovered fludtieisuaccuracy using a multiple-model
adaptive estimation approach coupled with an unscented Kalman filter. This approach works reasonably well but
requires that the area-to-mass ratio is kn@ymiori.
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Filtering algorithms for state estimation, such as the extended Kalman filter (EKF),Jazwinski (1970) the Unscented
Kalman filter (UKF)Julier et al. (2000) and particle filtersGordon et al. (1993) are commonly used to both estimate
hidden (indirectly observable) states and filter noisy measurements. The Wsierdie between the EKF and the
UKF results from the manner in which the state distribution of the nonlinear models is approximated. The UKF,
introduced by Julier and Uhlmann,Julier et al. (2000) uses a nonlinear transformation called the unscented transform,
in which the state probability density function (pdf) is represented by a set of weighted sigma points. When the
sigma points are propagated through the nonlinear system, the posterior mean and covariance are obtained up to the
second order for any nonlinearity. The EKF and UKF assume that the process noise terms are represented by zero-
mean Gaussian white-noise processes and the measurement noise is also represented by zero-mean Gaussian random
variable. Furthermore both approaches assume that plosteriori pdf is Gaussian in a linear domain. This is true
given the previous assumptions but under thea of nonlinear measurement functions and system dynamics the
initial Gaussian state uncertainty may quickly become non-Gaussian. Both filters only provide approximate solutions
to the nonlinear filtering problem, since thgosteriori pdf is most often non-Gaussian due to nonlingggas. The
EKF typically works well only in the region where the first-order Taylor-series linearization adequately approximates
the non-Gaussian pdf. The UKF provides higher-order moments for the computationagbdleriori pdf without
the need to calculate Jacobian matrices as required in the EKF. The orbital dynamics and measurement models used
for RSO orbit determination are highly nonlinear; thus, the UKF is used to provide a numerical means of estimating
the states of the RSO.

This work studies the problem of orbit determination from angles measurements using an UKF. Two examples
are investigated, the first is a LEO orbit and the second is a highly eccentric GTO orbit. Simulations are shown to
highlight the filter performance in both cases. The organization of the paper is as follows, first a review of the UKF
is provided. Following this astrometric observations are discussed and then a dynamic force model is provided. Solar
Radiation Pressure and drag force models are then discussed and finally simulation examples are provided followed
by a conclusion.

2. Unscented Transfor mation

The UKF, introduced by Julier and Uhlmann, Julier et al. (2000) uses a nonlinear transformation called the scaled
unscented transformation, in which the state probability distribution is represented by a set of weighted sigma points,
which are used to parameterize the true mean and covariance of the state distribution. When the sigma points are
propagated through the nonlinear system, the posterior mean and covariance is obtained up to second order for any
nonlinearity.

Consider the following nonlinear system and measurement model;

Xir1 = F(Xk) + 2 (1a)
Yk = h(xi) + vk (1b)

wherezi andvy are zero-mean Gaussian noise processes with covari@naedR, respectively. The state vector is
redefined in the UKF approach by augmenting the state vector to include noise variables, where the augmented state
vector is defined b2 = [x] z] v]]T and the augmented state vector has dimenkips N + g + |. All random

variables in the UKF are assumed to be Gaussian random variables. Therefore one can think of a joint distribution
for the random variables, equivalent to the distributionxpfdefining a multivariate Gaussian distribution given by

W(XZ) = W(Xk, Z«, Vk). Then the joint distribution is approximated Wy, zx, Vi) ~ N (X}, P¥). The mean augmented
vectorxg can written ag® = [u" Of; Of,4]", wherey is the state estimate. The covariance mafe,for the joint
distribution can be written as

P PXZ PXV
Pa — PZX Q PZV (2)
PVX PVZ R

Then the distribution is approximated as a set of symmetric selected scaled sigma points. The sigma points are
selected such that they are zero-mean, but if the distribution has mélaen simply adding: to each of the points
yields a symmetric set o\, points having the same covariance as the initial Gaussian distribution Julier et al. (2000).
The sigma points are selected to be along the principal axis direction of the Gaussian distriljxg)aor along the

2
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eigenvector directions d?7. Then the augmented state vector and covariance matrix is constructed by using the
following sigma points

ok < 2N, columns fromy/(na + )Pg (3a)
Xk(0) = p (3b)
Xi(0) = ow(i) + (3¢c)

Therefore given aiN; x N, covariance matri®2, a set of 2, sigma points can be generated from the columns of

the matrices,/(N; + )PZ, where VM is shorthand notation for a matr&such thatM = Z ZT. Using the notation
of the augmented state vector the sigma point vector can be written as

[0
X&) = | x%0) (@)
x'()
Then, given that these points are selected to represent the distribution of the augmented state vector, each sigma point
is given a weight that preserves the information contained in the initial distribution:

A
0 = N (5
oV _ A A2
W = L (1= ) (b)
oV __ /l
W =W = SN (50)

whereld = y°N, + « — N, includes scaling parameters. The constant parameter controls the size of the sigma point
distribution and should be a small numbet @ < 1, andk provides an extra degree of freedom that is used to fine-tune
the higher-order moments;= 3 — N, for a Gaussian distribution, algas a third parameter that further incorporates
higher-order &ects by adding the weighting of the zeroth sigma point to the calculation of the covariancé =nate

is the optimal value for Gaussian distributions.

3. Astrometric Observation Model

Consider observations made by a optical site which measures azimuth and elevation to an RSO. The common
terminology associated with this observation is givenddyis the position vector from the observer to the RS0,
is the position of the RSO in inertial coordinat®d, is the radius vector locating the observerands is the right
ascension and declination of the RSO, respectivelg, the sidereal time of the observar,s the latitude of the
observer, and is the east longitude from the observer to the RSO. The fundamental observation is given by

d=r"-R (6)
In non-rotating equatorial (inertial) components the vedtds given by
x— ||R'|| cos@) cosq)
d' = | y-[IR'lIsin@) cos) (7)
z—||IR'|| sin(1)

The conversion from the inertial to the observer coordinate system (Up-East-North) is given by

Pu cos@) 0O sin@) cosp) sin@E O
pel| = 0 1 0 —sin@) cosg) 0 |d (8)
On —sin(d) 0 cosQ) 0 0 1

3
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The angle observations consist of the azimuth, az, and elevation, el. The observation equations are given by

az=tan! (5—:) (99)
el = sint (Hﬁf”) (9b)

The az and el angles are used to defined the location of the RSO in the local sky and is used to determine if the RSO
is over the horizon by defining a minimum el angle. For the simulations considered in this paper observations are
required to satisfy el 20 Degs. In most cases angle observations are reported in right ascension and declination
angles

L /d@
RA = tan? (ﬁ) (10a)
DEC=sin! <(|jlldi'7|)) (10b)

When the RSO is over the horizon, sky is dark, and the RSO is not eclipsed by earth Eq. 10 is used to calculate angle
observations of the RSOs.
4. Orbital and Attitude System M odel

In this paper the position and velocity of an Earth orbiting RSO are denotédbyx y 77 andv' = [vx vy V)T,
respectively. The equations of motion of the RSO are given by

" H
rl :—r—sr' —aJZ+a'Srp+a('jrag (11)

wherey is the gravitational parameter of the Earths ||r'||, ay, is the gravitational perturbation due to non-symmetric

distribution of mass along the lines of latitude of the Earthaisr&;iepresents the acceleration perturbation due to SRP,
which will be discussed in detail in the following section. The acceleration due td thféect is given by

[y
w3 (8) (2)'| (1507
o-s()

whereJ, = 1.082 626 683x 1072 is the codficient for the second zonal harmonic aRgl = 6,378137 km is the
mean equatorial radius of the Earth.

(12)

SIN TSI S X

5. Solar Radiation Pressure

For higher altitude objects>(1,000 km) SRP represents the primary non-conservative perturbation acting on
RSOs. Because SRP depends upon the RSQO'’s position and orientation, the position and attitude dynamics are thus
coupled. The acceleration due to SRP is computed as a function of the total solar energy impressed upon exposed
RSO surfaces that are reflected, absorbed and reradiated. The rate at which radiant energy is incident on an element
of areadA is a function of angle between the normalddl, u,, and the Sun directions,,. The power of incident
radiant energy is given by

_ Dgyntot
P| - (d/do)z (Un uSUﬂ) dﬂ, (13)
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where®g ot is the average incident radiant flux density from the Sun at 1 AU, give®dayot = 1,367 W/m2,
Therefore the energy flux at any distarntis given by®sn 1o/ (d/do)?> wheredy = 1 AU. The reflected radiation will
have the following diuse and specular power:

Dsun tot
Pp = Cgi — (Up - Ugn) dA 14a
D diff (d/d0)2 ( n SLn) ( )
Dsun tot
Ps = Cspec——5 (Un - Usin) A, 14b
S spe (d/d0)2 (Un - Ustn) ( )

where the incident solar radiant energy is accounted for in three terms: the absorbed €ggrdlye specularly
reflected energ€spe, and the ditusely reflected energ@ir, which yields

Cabs+ Cspect+ Cairr = 1. (15)

The elemental force odA can be written in three terms: incident foraH;,, specular reflection forcalFs, and

diffuse reflection forcedFp. The incident force accounts for force due to the three t&ggs Cspec andCyig, Since

for each term the radiant particle is at least brought to rest before being absorbed or reflected. Th&iedommunts

for the transfer in momentum to bring a radiated particle to rest. The force termfifiose@land specular reflectance
accounts for the momentum transfer due to reflection. The momentum contribution due to incident energy is in the

opposite direction of the normal, given by
Py

dF, = — Un. (16)
The force exerted by specularly reflected energy is in the direction of specular reflection which is given by reflecting
the vectomugy, about an axis defined by the directiop Then the force exerted by specular reflection is given by

P
dFs = ?S [2 (Un - Usun) Un — Usyr] - (17)

Diffusely reflected energy will reflect equally in all directions and the resulting force will be in the normal direction
due to symmetric components canceling out. For surfaces obeying Lambert’'s cosine lafusd dmission the
diffuse term will be Ashikmin and Shirley (2000)
2P
dFp = é?Dun, (18)

where the facto% accounts for the portion of energy that is reflected in the normal direction. Then the force on an
element of area is given by

dF = dF| + dFS + dFD (19)

The force acting on a body due to solar radiation pressure can be determined by integrating over the Sun exposed
surface area, given by

F= / (dF| + dFs + dFD). (20)
sun
For a spherical body this integral is calculated over the Sun exposed area. The result is given by
_ Dsun,tot 2 .
= c(d/do)zﬂ [1+ 3Cd|ﬁ] Usun- (21)
This equation can be rewritten in terms of albedo
_ Ogun,tot
=~ od/do)? CrAugin, (22)

whereC, =1+ %Cdig.FinaIIy the acceleration can be written as

a| — _ (Dsun,tot Crﬂu
SPT o gd/dg)2 m T

(23)

where SRP albedo area-to-mass ratio is defined by%.
5
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Figure 1: Orbits Considered in both Scenarios

6. Atmospheric Drag

In this section, discussed a very simple but instructive atmospheric drag model. The planar equations of motion
for a LEO object &ected by nonconservative atmospheric drag forces are given byVallado (2007)

1CqA Vg
I 2 Vi
=——— 24
Arag > m PVrel Vral (244)
(r-Rmy)
p = po€ 2 (24b)

whereCy is the codficient of dragA is the cross-sectional araa,is the mass of the object, apds the atmospheric

density at a given altitude. The atmospheric density model is assumed to be an exponential model with reference
densitypo. It is also worth noting that the,q is not the velocity state vector, but rather the velocity relative to the
Earth’s atmosphere. For simulation purposes, the value of the ballistitoieet,3 = CdTﬂ, ischosen to be .2 which

is consistent with a HAMR objectT. Schildknecht (2008).

7. Simulation Results

Two simulation scenarios are presented to show the performance of the UKF in determining the orbit of an RSO
angles observations. For the first scenarios the RSO is in a Low Earth Orbit with orbital elements gaven by
67780km,e = 0,i = 0 deg,w = Q = 0.0 deg andMy = 1196798 deg. The second scenario is geosynchronous
Transfer orbit with orbital elements given lay= 2458200 km,e = 0.72429,i = 0 deg,w = Q = 0.0 deg and
Mp = 91065 deg. The simulation epoch is 15-March-2010 at 04:00:00 GST.

Angle observations are simulated using the Maui Ground Based-Electro-Optical Deep Space Surveillance sensor
as the ground station (2Z01° North, 15626° West, 3,058.6 m altitude). Measurements are corrupted by zero-mean
Gaussian white noise with standard deviations of 1 arc-seconds on the right ascension observation, 1 arc-seconds
on the declination observation and 0.1 for the brightness magnitude. Observations are available every 20 seconds
throughout the 10 days long simulation when RSO is over the horizon, sky is dark, and the RSO is not eclipsed by
earth.

7.1. Scenario 1

The First scenario considered a LEO RSO. The observation time intervals can be seen from Figure 3, as the RSO
becomes visible for el angles greater then 20 Degs. Figure 2 shows the observation geometry and since the first
scenario considers a LEO orbit, observations are only possible for short portions of the orbit as seen in figure 7. From

6
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Figure 2: Scenario 1 Passes of RSO Over Ground Site and portions of orbit that are observed.
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Figure 3: Scenario 1 Az and El Measurement Satisfying EI Constriants

Figure 7 we see the observable portions of the orbit plotted in Earth Centered Earth Fixed coordinated and although
the RSO makes many pass over the ground site the individual observations tracks are small and do not cover a large
portion of the RSOs orbit. Figure 4 shows the position variance for range, in-track, and cross-track directions over
time. From this figure we can see the range directions has the highest variance and therefore highest uncertainty. This
is due to the fact that the angles measurement are not very sensitive to range since they measure the RSO'’s location in
the sky and not the distance to the observer.

7.2. Scenario 2

The second scenario considered a GTO RSO. The observation time intervals can be seen from Figure 5, as the
RSO becomes visible for el angles greater than 20 Degs. Figure 7 shows the observation geometry and since the
second scenario considers a GTO orbit observations are sampled for a larger portion of the RSO’s orbit and since the
RSO has a more eccentric orbit, larger variations in range are observed as seen in figure 7.2. From Figure 7.2 we see
the observable portions of the orbit plotted in earth centered earth fixed coordinates and the RSO make fewer passes
as compared to the LEO scenario. Figure 6 shows the position variances for range, in-track, and cross-track directions
over time. The dierence between the in-track and cross-track versus the range uncertainty is not as great as the LEO

7

Los Alamos Space Weather Summer School 2012 35



10

s O

a.
2 i

s O

=
o
N
i

o (meters)
)

=
o
i

10 1

107 i i i
0 10 20 30 40 50
Time (Days)
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Figure 5: Scenario 1 Az and El Measurement Satisfying EI Constriants

scenario and this is due to the fact the the GTO scenario has a higher eccentricity and therefore large range variation
in range.

8. Conclusion

This paper presented an Unscented Kalman filter for angles only orbit determination. Two scenarios were studied,
the first considered a LEO orbit and the second considered a GTO orbit. For LEO orbit there are more observation
opportunities but the observation tracks are over short portions of the RSO’s orbit. For GTO orbit the observation
opportunities are less but the tracks span large portions of the orbit. The GTO orbit have larger range variations
since they typically have large eccentrics, needed to transfer a payload form LEO to GEO, and this creates greater
observability in range. Finally good filter performance was shown in both scenarios and future work will considered
the estimation of the SRP albedo area-to-mass ratio and the ballisficceE® along with the RSO'’s positions states.
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Abstract

Atmospheric density and drag coefficient are the two largest sources of error in calculating the aerodynamic forces on a
satellite in an orbit between 150 and 1000 km. Conjunction analysis uses a constant drag coefficient to predict the orbit
for most satellites. This use of a constant drag coefficient can quickly introduce orbit prediction errors on the order
of hundreds of meters to a kilometer. To accurately determine and predict the orbit path of a satellite, both density
modeling and drag coefficient modeling need to be improved. This research concentrates on modeling drag coefficient.
The computational Direct Simulation Monte Carlo (DSMC) code DS3V (Direct Simulation Three-Dimensional Visual
Program) is used to compute drag coefficients. The effectiveness of DS3V in simulating quasi-specular and partial
energy accommodation gas-surface interactions is examined using analytical solutions for a sphere and cylinder. The
sensitivity of drag coefficient to various input parameters is also examined. Result validate the ability of DS3V to
simulate quasi-specular and partial energy accommodation gas-surface interactions and also show that developing
drag coefficient models using the DSMC technique is highly feasible.

Keywords: Direct Simulation Monte Carlo, drag, DS3V, modeling, gas-surface interactions

1. Introduction

1.1. Drag Theory
Atmospheric drag is a major factor in predicting the orbit of a satellite in the extreme upper atmosphere. Equation
1 describes the theoretical model used for satellite drag calculations.

N 1 CDA 2 Vrel
Adrag = _ip_vrel 7, (H

m

Where d,q, is the acceleration due to drag, p is the atmospheric density, Cp is the satellite drag coefficient, A is the
satellite drag area, m is the mass of the satellite, and V,,; is the relative velocity of the satellite with respect to the
atmosphere. For satellites with compact shapes, like spherical and cylindrical satellites, the atmospheric density and
the drag coefficient are the biggest sources of error. For non-primitive satellites with complex geometries, the drag
area adds a certain level of uncertainity in modeling accelerations due to drag. Neutral wind in the atmosphere is also
a cause of uncertainity in the calculation of aerodynamics forces. Winds on the order of 1km/s have been observed
at high latitudes during strong geomagnetic storms (Marcos et al., 2007). However, for the purpose of this study the
neutral winds have been neglected.

Email addresses: pmehta@ku.edu (Piyush M. Mehta), balu@lanl.gov (Balu Nadiga), shoemaker@lanl.gov (Michael Shoemaker)
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1.2. Atmospheric Density Models

Atmospheric density and satellite drag coeflicient are two unknowns in a single equation, as seen in Equation 1,
and are therefore intertwined and cannot be easily separated. Typically, density models have been updated by using
spherical calibration spheres at different altitudes and using a constant drag coefficient for these spheres to fit densities
to observed orbital data. This use of a constant drag coefficient induces errors in the density estimates derived from
these empirical density models.

The High Accuracy Satellite Drag Model (HASDM) developed by the Air Force Space Battle Lab estimates and
predicts a dynamically varying global density field using a dynamic calibration of atmosphere (DCA) algorithm to
solve for the real-time phases and amplitudes of the diurnal and semidiurnal variation of the upper atmospheric den-
sity (Storz et al., 2002). HASDM uses objects with compact shapes and drag coefficients that vary with altitude to
derive density corrections using orbital drag data. The use of drag coefficients that vary with altitude fail to account
for density variations along the orbit of the satellite.

Wright (2003) and Wright and Woodburn (2004) recently developed a technique for real-time estimation of at-
mospheric density and ballistic coefficient as a part of the orbit determination process. Wright’s technique for simul-
taneously estimating real-time atmospheric density and ballistic coefficient provides an advantage over the standard
techniques of estimating only ballistic coefficient or drag coefficient individually. The density and ballistic coefficient
corrections are modeled as exponential Gauss-Markov processes, which determine the density correction at any given
time step as a function of corrections from previous time steps. The technique was recently validated and successfully
used by McLaughlin et al. (2011) for CHAMP and GRACE satellites.

The state-of-the-art empirical density models show good statistical agreement with densities derived from ac-
tual spacecraft data during quiet times but are limited in advancing our understanding of the physical processes in
the upper atmosphere. The physics based Global Ionosphere-Thermosphere Model (GITM) (Basis of the IMPACT
project, www.impact.lanl.gov) enables us to answer important physics questions regarding the coupling between space
weather, upper atmospheric density, and orbital drag by accurately describing the energy deposition and cooling dur-
ing space weather events. However, the model is allowed to evolve using physical relationship and phenomenon using
the initial and boundary conditions. Therefore, it is important to validate the model by comparing the model output
(total density, constituent densities, and atmospheric translational temperature) with trusted empirical models.

1.3. Projected Drag Area

The projection area, A, for a satellite is a function of the geometry, and the attitude of the satellite relative of the
free-stream. This area remains constant for satellite with primitive geometries such as a sphere or a cylinder flying
in an arrow orientation. However, most satellite in low-Earth orbit (LEO) do not have primitive but have complex
geometries and require attitude data for accurate estimation of drag area. Since the drag coefficient of a sphere and
a cylinder in arrow orientation is insensitive to projected drag area, the validation for the DS3V code is done using
spherical and cylindrical satellites.

1.4. Drag Coefficient

The drag coefficient of a spacecraft in LEO is a strong function of the way the free-stream molecules interact with
the surface of the spacecraft, the orientation of the spacecraft relative of the atmosphere, spacecraft geometry, the
velocity of the spacecraft relative to the atmosphere, the chemical composition of the atmosphere, the atmospheric
temperature at the spacecraft location, and the surface properties of the spacecraft. In the realm of spacecraft dynamics
and orbit determination, the drag coeflicient can be referred to in three distinct ways: (i) the physical drag coefficient,
(ii) the fitted drag coefficient, and (iii) the fixed drag coeflicient. The physical drag coefficient is determined by the
exchange of momentum by the free-stream atmospheric molecules with the spacecraft surface (Moe et al., 2012).
On the other hand, fitted drag coefficients are estimated as part of an orbit determination process and fixed drag
coefficient is a constant value of Cp. Fitted drag coefficients are specific to the atmospheric model used and carry
along the limitations of the atmospheric model and also frequently absorb other force model errors. Throughout this
document, the term drag coeflicient will refer to physical drag coefficient, unless stated otherwise.
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1.4.1. Energy-Accommodation Coefficient

Drag coeficient of a satellite is a strong function of how the incident free-stream molecules interact with the sur-
face of the spacecraft. An important parameter that describes this interaction is the energy accommodation coefficient.
Energy accommodation is defined as the fraction of the kinetic energy lost by the molecules incident on the spacecraft
surface before reemission. The formal definition of energy accommodation is given later in Equation 2.

Measurements from pressure gauges and mass spectrometers flown on satellites have shown that surfaces of satel-
lites orbiting in LEO are covered with a layer of adsorbed atomic oxygen and its reaction products (Moe et al., 1969;
Hedin et al., 1973; Moe et al., 1998). Molecules striking contaminated surfaces have been observed to have high
energy accommodation coefficients and be reemitted with a diffuse (Maxwellian) angular distribution (Stickney and
Hurlbut, 1963; Kostoff et al., 1967).

Empirically determined energy accommodation coefficients as a function of altitude for solar-maximum and solar-
minimum conditions for satellites orbiting in LEO are provided by (Moe et al., 1995; Bowman et al., 2005; Pardini et
al., 2010). Recently, a semi-empirical model for satellite energy accommodation coefficients was developed (Pilinski
et al., 2010). Since the empirical NRLMSISE-00 density model was used to map average atmospheric properties as a
function of altitude, the energy accommodation model developed by (Pilinski et al., 2010) can be used only with the
empirical NRLMSISEOO density model and brings with it the model errors in the number density of atomic oxygen
and the free-stream atmospheric temperature. Because the focus of this study is validation of the DS3V code, the
energy accommodation coefficient was varied over its entire range from 0 to 1, and hence is not tied to a specific
model.

1.4.2. Gas-Surface Interaction (GSI) Models

Free-stream molecules that interact with a clean spacecraft surface are reflected in a specular way. However, satel-
lite surfaces in LEO are predominantly contaminated with atomic oxygen. A free-stream molecule, when interacting
with a contaminated surface, gets adsorbed by the layer of atomic oxygen, attains equilibrium with the surface, and
is reemitted with a Maxwellian or diffuse distribution. As the altitude of the satellite increases, the number density
of oxygen decreases and that of helium increases. Helium has a lower energy accommodation than atomic oxygen.
Therefore, the increase of helium in the atmosphere results in a low overall energy-accommodation, and results in the
molecules being reemitted with a Gaussian distribution about an angle between the surface normal and the specular
angle. Such a reflection is called a quasi-specular reemission first introduced by (Schamberg, 1959). Figure 1 shows
the picture representation of a diffuse (Maxwellian) or a quasi-specular reflection distribution.

Diffuse Reflection Quasi-Specular Reflection
(Schamberg [2])

T % 7

Figure 1: Gas-Surface Interaction Models

1.4.3. Spacecraft Surface Temperature

The spacecraft surface temperatures for a typical surface material (aluminum, solar array, etc.) can be estimated
using the equations outlined in Brown (2002). The surface temperature can vary widely depending on the exposure
of the spacecraft to the sun. Aluminum was used for surface temperature calculations for the purpose of this study.
Temperatures calculated for an aluminium sphere using equations in Brown (2002) yielded temperatures of 465 K in
sunlight and 183 K in darkness.
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1.5. Direct Simulation Monte Carlo

The Direct Simulation Monte Carlo, DSMC, technique was developed and first applied by Bird (1994) in 1963.
The Monte Carlo method is a generic numerical method for a variety of mathematical problems based on computer
generation of random number. DSMC is the Monte Carlo method for simulation of dilute gas flows at the molecular
level. DSMC is, to date, the basic numerical method in the kinetic theory of gases and rarefied gas dynamics. The
DSMC method uses a cell and particle approach to track a system of representative molecules, while probabilistically
selecting candidates for inter-molecular collisions. Every simulated molecule represents W molecules of real gas,
where W is the statistical weight of a simulated molecule. The statistical weight typically lies in the range of 10'? to
10?° real molecules per every simulated molecule.

The computational domain is divided into small cells and molecules in each cell are tracked independently. The
position coordinates and velocity components of the simulated molecules are stored in the memory of the computer
and are modified with time as the molecules are concurrently tracked through representative collision and boundary
interactions within the computational domain. At any given time, collision probabilities are calculated and collisions
are carried out only between molecules in the same cell. The motion of the molecules and the collisions between them
are decoupled over small time steps. The time step is much smaller than the mean collision time and a typical cell
dimension is much smaller than the local mean free path (Bird, 2006).

The satellite or spacecraft geometry is inserted into flow field as a surface mesh. The mesh format differs from one
program to another. Molecules are inserted into the flow field at the local boundary temperature through the inflow
boundaries using a Maxwellian distribution in velocity. In typical DSMC simulations, like the flow over a satellite or
a vehicle in the Earths atmosphere, the computational domain is part of a larger flow environment. The boundaries of
the computational domain are therefore set to be transparent or as part of the free-stream. Molecules are allowed to
leave and enter the computational domain while varying the number of simulated molecules with time.

1.5.1. DS3V

The DS3V (Direct Simulation Three-Dimensional Visual Program) was used to model the interactions of sim-
ulated molecules with parameterized surfaces and intermolecular collision dynamics. In spite of the computation-
ally demanding nature of DS3V, it was chosen for three main reasons: (i) it is freely available on the Internet
(www.gab.com.au), (ii) it is highly reliable and has been widely used, and (iii) it is very user friendly (Graphical
User Interface). Figure 2 shows a screenshot of the 3-Dimensional DSMC program DS3V developed by (Bird, 1994).

The only computational parameter specified by the user is the initial number of megabytes to be used for
storage. The size of the cells used to discretize the computational domain is set as a function of this initial number
of megabytes defined by the user. The program sets all other computational variables automatically. However, an
optional menu is available should the user choose to define the computational parameters.

DS3V does not allow the user to explicitly specify a value of accommodation coefficient. The default is
complete accommodation. Therefore, in order to simulate partial energy accommodation, the temperature of the
spacecraft surface is set equal to the kinetic temperature of the reemmitted molecules. This forces an assumption of
single reflection of individual molecules. This mean that, once a molecule interacts with the surface of the spacecraft,
it travels a large distance before colliding with another incoming molecule and looses any chance of re-interacting with
the surface. Single reflections are dominant in free molecular flow (FMF) for simple convex geometries. However,
caution needs to be taken when dealing with concave and complex geometries. Pilinski et al. (2011) showed that the
difference in drag coefficients computed for concave geometries using single and multiple reflections is less than 1%.
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Figure 2: Screenshot of the DS3V module

2. Closed Form Analytical Equations

The energy accoommodation coefficient, «, is formally defined as:

Tii— Ty
o= ki k,r (2)
Tk,i - Tw
where T}; is the kinetic temperature of the incoming molecules, Ty, is the kinetic temperature of the reemitted
molecules, and T, is the energy the reemitted molecules would have if they attained thermal equilibrium with the
spacecraft surface before emission. The kinetic temperature of the incident molecules can be given as:

2
_ mvrel

Ty = 2ol 3
X, 3%, 3)

where m is the mean molecular mass of the atmosphere at the satellite location, v,,; is the spacecraft relative velocity,
and k; is the Boltzmann’s constant. The kinetic temperature of the reflected molecules for a monatomic species if
given as:

Ty, = Tri(1 - @) +aT,, “)

The expected errors in applying Equation 4 to diatomic molecules in less than 1%. The speed ratio s is defined as the
ratio of the satellite speed to the most probable thermal speed of the ambient molecules.

s = Vrelﬂ (5)
m
B= T (©)
5
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where T is the free-stream atmospheric temperature. The error function, erf() is defined as:

erf(s) = % fo ' exp(—1)dt @)

Equation 8 defines the analytical solution for the drag coefficient of a sphere for a quasi-specular gas-surface inter-
action model with complete accommodation (@=1), originally derived by Schamberg (1959) and re-derived by Bird
(1994). In case of partial accommodation simulation with DS3V, (a #1), the surface temperature T,, is replaced by
the kinetic temperature of the reflected molecules, T} ,, for the appropriate value of the accommodation coefficient.
T is the thermal temperature of the ambient gas irrespective of its bulk motion.

252+ 1 45 +45% -1 20l —e)\n |T,
Coupere = = = -expl=s") + = G—erf(s) + Tf - @®)

Equation 9 defines the analytical solution for the drag coefficient of a cylinder for a diffuse GSI with complete accom-
modation deduced by Sentman (1961).

Cp cylinder = TZ—)[(Z + )er f(s) + Le s \/_ A / )
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3. Results

Sensitivity studies were performed to understand the variation of drag coefficient with the different input parame-
ters. Sensitivity studies were performed using the following reference values: an atmospheric temperature of 1157 K,
a surface temperature of 300 K, a relative atmospheric speed of 7590 m/s, and a molecular mass of 11.35 atomic mass
units. Different input parameters were varied one at a time in the range observed in low-Earth orbits while keeping
the other fixed at the above mentioned reference values. Figure 3 shows that the drag coeflicient can vary by 2-3% as
a function of spacecraft surface temperature between day and night cycles.
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Figure 3: Variation of drag coefficient of a sphere with spacecraft surface temperature

Figure 4 and Figure 5 show the variation of the drag coefficient with free-stream atmospheric temperature and
the spacecraft relative velocity respectively. Results shows strong correlation of the drag coefficient to both the free-
stream atmospheric temperature as well as spacecraft relative velocity.

Although gas-surface interactions below 500 km in altitude are dominantly diffuse in nature, the ability of the
DS3V code to simulate quasi-specular interactions was examined using a sphere for possible use at higher altitudes in
the future. Figure 6 shows that the DS3V does well in simulation quasi-specular gas surface interactions.

Figure 7 shows the ability of DSMC to compute the drag coefficient for sphere as a function of accommodation
coefficient and the sensitivity of drag coefficients to energy-accommodation. The results show that the computed drag
coefficients start to diverge from the analytical solution as accommodation coefficient goes down. This is an expected
result since as accommodation coefficient decreases, more and more of the adsorption effect is being incorporated
through a constant uniform surface temperature.

Figure 8 shows the ability of DSMC to compute the drag coefficient for a cylinder as a function of the accom-
modation coefficient. The results again show that the computed drag coefficients start to diverge from the analytical
solution as accommodation coefficient goes down. However, according to the energy-accommodation model of Pilin-
ski, accommodation coefficients vary from 0.9 to 1 at altitudes below 500 km. Therefore, it can be concluded that
DSMC performs well in explicitly computing drag coeflicients for satellites at altitudes with partial accommodation.
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Figure 4: Variation of drag coefficient of a sphere with free-stream temperature
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Figure 5: Variation of drag coefficient of a sphere with spacecraft relative velocity
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